当前位置:
X-MOL 学术
›
Mater. Chem. Phys.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Encapsulated ionic liquids for CO2 capture
Materials Chemistry and Physics ( IF 4.3 ) Pub Date : 2020-09-01 , DOI: 10.1016/j.matchemphys.2020.122982 Hongmin Wang , Jiamei Zhu , Liang Tan , Min Zhou , Shuangquan Zhang
Materials Chemistry and Physics ( IF 4.3 ) Pub Date : 2020-09-01 , DOI: 10.1016/j.matchemphys.2020.122982 Hongmin Wang , Jiamei Zhu , Liang Tan , Min Zhou , Shuangquan Zhang
Abstract Aiming to improve the gas diffusion in ionic liquid (IL) and give full play to the selectivity of IL for CO2 sorption, dispersed 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]), tri-n-butyl propyl phosphonium succinimide ([P4443][SUC]) and tri-n-butyl propyl phosphonium iminodiacetic acid ([P4443]2[IDA]) droplets as core materials were encapsulated in silica gel, polysulfone and polystyrene by sol-gel method, solvent evaporation and suspension polymerization method to form the novel microcapsules containing ionic liquid. The microcapsules were evaluated by infrared analysis, thermogravimetry, morphology and CO2/N2 sorption. It is concluded that the preparation method and IL type have a great influence on loading amount and morphology, which further affect CO2 sorption. The IL-based microcapsules display irregular or spherical particles and contain relatively high amounts of ionic liquid (~60–70 wt%) by sol-gel method and suspension polymerization. Encapsulated ionic liquid materials have the better CO2 sorption capacity and CO2/N2 selectivity than the supporters, especially phosphonium ionic liquid ([P4443][SUC]) microcapsules prepared by sol-gel method. The loss of CO2 sorption capacity is only about 0.104 wt% after being recycled for 8 times. Additionally, CO2 sorption kinetics of the ionic liquid microcapsules follow pseudo-second-order model and microcapsules have a drastic increase in mass transfer rate.
中文翻译:
用于 CO2 捕获的封装离子液体
摘要 为提高离子液体(IL)中的气体扩散能力,充分发挥离子液体对CO2吸附的选择性,分散六氟磷酸1-丁基-3-甲基咪唑鎓([BMIM][PF6])、三正丁基丙基以鏻琥珀酰亚胺([P4443][SUC])和三正丁基丙基鏻亚氨基二乙酸([P4443]2[IDA])液滴为核心材料,采用溶胶-凝胶法、溶剂蒸发法将其包裹在硅胶、聚砜和聚苯乙烯中悬浮聚合法形成新型含离子液体微胶囊。通过红外分析、热重分析、形态学和 CO2/N2 吸附来评估微胶囊。结论是制备方法和IL类型对负载量和形貌有很大影响,进而影响CO2的吸附。基于 IL 的微胶囊通过溶胶-凝胶法和悬浮聚合显示出不规则或球形颗粒,并含有相对大量的离子液体(~60-70 wt%)。包封的离子液体材料比载体具有更好的CO2吸附能力和CO2/N2选择性,尤其是通过溶胶-凝胶法制备的鏻离子液体([P4443][SUC])微胶囊。循环使用 8 次后,CO2 吸附能力的损失仅为 0.104 wt% 左右。此外,离子液体微胶囊的 CO2 吸附动力学遵循伪二级模型,微胶囊的传质速率急剧增加。包封的离子液体材料比载体具有更好的CO2吸附能力和CO2/N2选择性,尤其是通过溶胶-凝胶法制备的鏻离子液体([P4443][SUC])微胶囊。循环使用 8 次后,CO2 吸附能力的损失仅为 0.104 wt% 左右。此外,离子液体微胶囊的 CO2 吸附动力学遵循伪二级模型,微胶囊的传质速率急剧增加。包封的离子液体材料比载体具有更好的CO2吸附能力和CO2/N2选择性,尤其是通过溶胶-凝胶法制备的鏻离子液体([P4443][SUC])微胶囊。循环使用 8 次后,CO2 吸附能力的损失仅为 0.104 wt% 左右。此外,离子液体微胶囊的 CO2 吸附动力学遵循伪二级模型,微胶囊的传质速率急剧增加。
更新日期:2020-09-01
中文翻译:
用于 CO2 捕获的封装离子液体
摘要 为提高离子液体(IL)中的气体扩散能力,充分发挥离子液体对CO2吸附的选择性,分散六氟磷酸1-丁基-3-甲基咪唑鎓([BMIM][PF6])、三正丁基丙基以鏻琥珀酰亚胺([P4443][SUC])和三正丁基丙基鏻亚氨基二乙酸([P4443]2[IDA])液滴为核心材料,采用溶胶-凝胶法、溶剂蒸发法将其包裹在硅胶、聚砜和聚苯乙烯中悬浮聚合法形成新型含离子液体微胶囊。通过红外分析、热重分析、形态学和 CO2/N2 吸附来评估微胶囊。结论是制备方法和IL类型对负载量和形貌有很大影响,进而影响CO2的吸附。基于 IL 的微胶囊通过溶胶-凝胶法和悬浮聚合显示出不规则或球形颗粒,并含有相对大量的离子液体(~60-70 wt%)。包封的离子液体材料比载体具有更好的CO2吸附能力和CO2/N2选择性,尤其是通过溶胶-凝胶法制备的鏻离子液体([P4443][SUC])微胶囊。循环使用 8 次后,CO2 吸附能力的损失仅为 0.104 wt% 左右。此外,离子液体微胶囊的 CO2 吸附动力学遵循伪二级模型,微胶囊的传质速率急剧增加。包封的离子液体材料比载体具有更好的CO2吸附能力和CO2/N2选择性,尤其是通过溶胶-凝胶法制备的鏻离子液体([P4443][SUC])微胶囊。循环使用 8 次后,CO2 吸附能力的损失仅为 0.104 wt% 左右。此外,离子液体微胶囊的 CO2 吸附动力学遵循伪二级模型,微胶囊的传质速率急剧增加。包封的离子液体材料比载体具有更好的CO2吸附能力和CO2/N2选择性,尤其是通过溶胶-凝胶法制备的鏻离子液体([P4443][SUC])微胶囊。循环使用 8 次后,CO2 吸附能力的损失仅为 0.104 wt% 左右。此外,离子液体微胶囊的 CO2 吸附动力学遵循伪二级模型,微胶囊的传质速率急剧增加。