当前位置: X-MOL 学术J. Phys. Chem. C › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Molecular Recognition and Band Alignment in 3D Covalent Organic Frameworks for Cocrystalline Organic Photovoltaics
The Journal of Physical Chemistry C ( IF 3.3 ) Pub Date : 2020-04-16 , DOI: 10.1021/acs.jpcc.0c00087
Jordan M. Cox 1 , Bradley Mileson 1 , Ananthan Sadagopan 1 , Steven A. Lopez 1
Affiliation  

Covalent organic frameworks (COFs) have emerged as versatile, functional materials comprised of low-cost molecular building blocks. The permanent porosity, long-range order, and high surface area of 3D-COFs permit co-crystallization with other materials driven by supramolecular interactions. We designed a new subphthalocyanine-based 3D covalent organic framework (NEUCOF1) capable of forming cocrystals with fullerene (C60) via periodic ball-and-socket binding motifs. The high cocrystalline surface area and long-range order of NEUCOF1 eliminate the typical surface area vs long-range order trade-off in organic photovoltaics (OPVs). We used plane-wave density functional theory (PBE) to optimize NEUCOF1 and NEUCOF1–C60 co-crystals and determine their electronic band structures. Molecular dynamics (MD) simulations showed that dispersive interactions promote co-crystallinity in NEUCOF1–C60 and are stable up to 350 K. The band structures at 0 and 350 K suggest that there is a driving force of 0.27 eV for exciton charge transfer to the pocket-bound fullerenes. Charge separation could then occur at the COF-C60 D–A interface, followed by the transfer of the free electron to the nanowire of C60 acceptors with a driving force of 0.20 eV.

中文翻译:

共晶有机光伏的3D共价有机框架中的分子识别和能带对准

共价有机框架(COF)已作为一种多功能,功能性材料出现,其中包含低成本的分子构件。3D-COF的永久孔隙率,远距离有序性和高表面积允许与超分子相互作用驱动的其他材料共结晶。我们设计了一种新的基于亚酞菁的3D共价有机骨架(NEUCOF1),该骨架能够通过周期性的球窝结合图案与富勒烯(C 60)形成共晶体NEUCOF1的高共晶表面积和远距离有序消除了有机光伏(OPV)的典型表面积与远距离有序的权衡。我们使用平面波密度泛函理论(PBE)优化NEUCOF1NEUCOF1–C 60共晶体,并确定其电子能带结构。分子动力学(MD)模拟表明,色散相互作用促进NEUCOF1 –C 60中的共结晶性,并在高达350 K时保持稳定。在0和350 K处的能带结构表明,激子电荷转移到0.27 eV的驱动力口袋里的富勒烯。然后可能在COF-C 60 D–A界面发生电荷分离,然后以0.20 eV的驱动力将自由电子转移到C 60受体的纳米线。
更新日期:2020-04-24
down
wechat
bug