当前位置: X-MOL 学术Small › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Enhanced Piezo-Photoelectric Catalysis with Oriented Carrier Migration in Asymmetric Au-ZnO Nanorod Array.
Small ( IF 13.0 ) Pub Date : 2020-04-09 , DOI: 10.1002/smll.201907603
Deli Xiang 1, 2 , Zhirong Liu 2, 3 , Mengqi Wu 2, 3 , Huanhuan Liu 2 , Xiaodi Zhang 2, 3 , Zhuo Wang 2, 3 , Zhong Lin Wang 2, 3, 4 , Linlin Li 2, 3
Affiliation  

Current photocatalytic semiconductors often have low catalytic performance due to limited light utilization and fast charge carrier recombination. Formation of Schottky junction between semiconductors and plasmonic metals can broaden the light absorption and facilitate the photon-generated carriers separation. To further amplify the catalytic performance, herein, an asymmetric gold-zinc oxide (Asy-Au-ZnO) nanorod array is rationally designed, which realizes the synergy of piezocatalysis and photocatalysis, as well as spatially oriented electron-hole pairs separation, generating a significantly enhanced catalytic performance. In addition to conventional properties from noble metal/semiconductor Schottky junction, the rationally designed heterostructure has several additional advantages: 1) The piezoelectric ZnO under light and mechanical stress can directly generate charge carriers; 2) the Schottky barrier can be reduced by ZnO piezopotential to enhance the injection efficiency of hot electrons from Au nanoparticles to ZnO; 3) the unique asymmetric nanorod array structure can achieve a spatially directed separation and migration of the photon-generated carriers. When ultrasound and all-spectrum light irradiation are exerted simultaneously, the Asy-Au-ZnO reaches the highest catalytic efficiency of 95% in 75 min for dye degradation. It paves a new pathway for designing unique asymmetric nanostructures with the synergy of photocatalysis and piezocatalysis.

中文翻译:

非对称Au-ZnO纳米棒阵列中具有定向载流子迁移的增强压电光电催化。

由于有限的光利用和快速的载流子复合,当前的光催化半导体通常具有低催化性能。在半导体和等离子体金属之间形成肖特基结可以加宽光吸收并促进光子产生的载流子分离。为了进一步增强催化性能,本文中,合理设计了一种不对称的金氧化锌(Asy-Au-ZnO)纳米棒阵列,实现了压电催化和光催化的协同作用,以及空间定向的电子-空穴对分离,产生了大大提高了催化性能。除了贵金属/半导体肖特基结的常规特性外,合理设计的异质结构还具有其他一些优点:1)压电ZnO在轻和机械应力作用下可以直接产生电荷载流子; 2)ZnO压电势能降低肖特基势垒,从而提高热电子从Au纳米粒子向ZnO的注入效率;3)独特的不对称纳米棒阵列结构可以实现光子产生载流子的空间定向分离和迁移。当同时施加超声波和全光谱光照射时,Asy-Au-ZnO在75分钟内可达到染料降解的最高催化效率95%。它为光催化和压电催化的协同作用设计独特的不对称纳米结构开辟了一条新途径。3)独特的不对称纳米棒阵列结构可以实现光子产生载流子的空间定向分离和迁移。当同时施加超声波和全光谱光照射时,Asy-Au-ZnO在75分钟内可达到染料降解的最高催化效率95%。它为光催化和压电催化的协同作用设计独特的不对称纳米结构开辟了一条新途径。3)独特的不对称纳米棒阵列结构可以实现光子产生载流子的空间定向分离和迁移。当同时施加超声波和全光谱光照射时,Asy-Au-ZnO在75分钟内可达到染料降解的最高催化效率95%。它为光催化和压电催化的协同作用设计独特的不对称纳米结构开辟了一条新途径。
更新日期:2020-04-09
down
wechat
bug