Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Epitaxial Growth of Centimeter-Scale Single-Crystal MoS2 Monolayer on Au(111).
ACS Nano ( IF 15.8 ) Pub Date : 2020-04-08 , DOI: 10.1021/acsnano.0c01478 Pengfei Yang 1, 2 , Shuqing Zhang 3 , Shuangyuan Pan 1, 2 , Bin Tang 4 , Yu Liang 5 , Xiaoxu Zhao 6 , Zhepeng Zhang 1, 2 , Jianping Shi 1, 2 , Yahuan Huan 1, 2 , Yuping Shi 1, 2 , Stephen John Pennycook 6 , Zefeng Ren 5 , Guanhua Zhang 5 , Qing Chen 4 , Xiaolong Zou 3 , Zhongfan Liu 1 , Yanfeng Zhang 1, 2
ACS Nano ( IF 15.8 ) Pub Date : 2020-04-08 , DOI: 10.1021/acsnano.0c01478 Pengfei Yang 1, 2 , Shuqing Zhang 3 , Shuangyuan Pan 1, 2 , Bin Tang 4 , Yu Liang 5 , Xiaoxu Zhao 6 , Zhepeng Zhang 1, 2 , Jianping Shi 1, 2 , Yahuan Huan 1, 2 , Yuping Shi 1, 2 , Stephen John Pennycook 6 , Zefeng Ren 5 , Guanhua Zhang 5 , Qing Chen 4 , Xiaolong Zou 3 , Zhongfan Liu 1 , Yanfeng Zhang 1, 2
Affiliation
Two-dimensional (2D) semiconducting transition metal dichalcogenides (TMDs) have emerged as attractive platforms in next-generation nanoelectronics and optoelectronics for reducing device sizes down to a 10 nm scale. To achieve this, the controlled synthesis of wafer-scale single-crystal TMDs with high crystallinity has been a continuous pursuit. However, previous efforts to epitaxially grow TMD films on insulating substrates (e.g., mica and sapphire) failed to eliminate the evolution of antiparallel domains and twin boundaries, leading to the formation of polycrystalline films. Herein, we report the epitaxial growth of wafer-scale single-crystal MoS2 monolayers on vicinal Au(111) thin films, as obtained by melting and resolidifying commercial Au foils. The unidirectional alignment and seamless stitching of the MoS2 domains were comprehensively demonstrated using atomic- to centimeter-scale characterization techniques. By utilizing onsite scanning tunneling microscope characterizations combined with first-principles calculations, it was revealed that the nucleation of MoS2 monolayer is dominantly guided by the steps on Au(111), which leads to highly oriented growth of MoS2 along the ⟨110⟩ step edges. This work, thereby, makes a significant step toward the practical applications of MoS2 monolayers and the large-scale integration of 2D electronics.
中文翻译:
在Au(111)上外延生长厘米级单晶MoS2单层。
二维(2D)半导体过渡金属二硫化碳(TMD)已成为下一代纳米电子学和光电子学中吸引人的平台,用于将器件尺寸减小至10 nm。为了实现这一点,具有高结晶度的晶片级单晶TMD的受控合成一直是人们的不懈追求。然而,先前在绝缘衬底(例如云母和蓝宝石)上外延生长TMD膜的努力未能消除反平行畴和孪晶边界的发展,导致形成多晶膜。在这里,我们报告了在邻近的Au(111)薄膜上晶片级单晶MoS2单层的外延生长,这是通过熔化和固化商业化的Au箔获得的。MoS2域的单向排列和无缝拼接已使用原子级到厘米级的表征技术得到了全面证明。通过现场扫描隧道显微镜表征与第一性原理计算相结合,发现MoS2单层的成核主要受Au(111)上台阶的引导,这导致MoS2沿⟨110⟩台阶边缘高度定向生长。因此,这项工作朝着MoS2单层的实际应用和2D电子产品的大规模集成迈出了重要的一步。结果表明,MoS2单层的成核作用主要受Au(111)上台阶的引导,这导致MoS2沿⟨110⟩台阶边缘高度定向生长。因此,这项工作朝着MoS2单层的实际应用和2D电子产品的大规模集成迈出了重要的一步。结果表明,MoS2单层的成核作用主要受Au(111)上台阶的引导,这导致MoS2沿⟨110⟩台阶边缘高度定向生长。因此,这项工作朝着MoS2单层的实际应用和2D电子产品的大规模集成迈出了重要的一步。
更新日期:2020-04-08
中文翻译:
在Au(111)上外延生长厘米级单晶MoS2单层。
二维(2D)半导体过渡金属二硫化碳(TMD)已成为下一代纳米电子学和光电子学中吸引人的平台,用于将器件尺寸减小至10 nm。为了实现这一点,具有高结晶度的晶片级单晶TMD的受控合成一直是人们的不懈追求。然而,先前在绝缘衬底(例如云母和蓝宝石)上外延生长TMD膜的努力未能消除反平行畴和孪晶边界的发展,导致形成多晶膜。在这里,我们报告了在邻近的Au(111)薄膜上晶片级单晶MoS2单层的外延生长,这是通过熔化和固化商业化的Au箔获得的。MoS2域的单向排列和无缝拼接已使用原子级到厘米级的表征技术得到了全面证明。通过现场扫描隧道显微镜表征与第一性原理计算相结合,发现MoS2单层的成核主要受Au(111)上台阶的引导,这导致MoS2沿⟨110⟩台阶边缘高度定向生长。因此,这项工作朝着MoS2单层的实际应用和2D电子产品的大规模集成迈出了重要的一步。结果表明,MoS2单层的成核作用主要受Au(111)上台阶的引导,这导致MoS2沿⟨110⟩台阶边缘高度定向生长。因此,这项工作朝着MoS2单层的实际应用和2D电子产品的大规模集成迈出了重要的一步。结果表明,MoS2单层的成核作用主要受Au(111)上台阶的引导,这导致MoS2沿⟨110⟩台阶边缘高度定向生长。因此,这项工作朝着MoS2单层的实际应用和2D电子产品的大规模集成迈出了重要的一步。