当前位置:
X-MOL 学术
›
Nano Lett.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
An All-Ceramic, Anisotropic, and Flexible Aerogel Insulation Material.
Nano Letters ( IF 9.6 ) Pub Date : 2020-04-10 , DOI: 10.1021/acs.nanolett.0c00917 Lu An 1 , Jieyu Wang 2 , Donald Petit 1 , Jason N Armstrong 1 , Karen Hanson 3 , Jason Hamilton 3 , Mauricio Souza 3 , Donghui Zhao 3 , Changning Li 1 , Yuzi Liu 4 , Yulong Huang 1 , Yong Hu 1 , Zheng Li 1, 5 , Zefan Shao 1 , André Omer Desjarlais 6 , Shenqiang Ren 1, 2, 7
Nano Letters ( IF 9.6 ) Pub Date : 2020-04-10 , DOI: 10.1021/acs.nanolett.0c00917 Lu An 1 , Jieyu Wang 2 , Donald Petit 1 , Jason N Armstrong 1 , Karen Hanson 3 , Jason Hamilton 3 , Mauricio Souza 3 , Donghui Zhao 3 , Changning Li 1 , Yuzi Liu 4 , Yulong Huang 1 , Yong Hu 1 , Zheng Li 1, 5 , Zefan Shao 1 , André Omer Desjarlais 6 , Shenqiang Ren 1, 2, 7
Affiliation
To exploit the high-temperature superinsulation potential of anisotropic thermal management materials, the incorporation of ceramic aerogel into the aligned structural networks is indispensable. However, the long-standing obstacle to exploring ultralight superinsulation ceramic aerogels is the inaccessibility of its mechanical elasticity, stability, and anisotropic thermal insulation. In this study, we report a recoverable, flexible ceramic fiber-aerogel composite with anisotropic lamellar structure, where the interfacial cross-linking between ceramic fiber and aerogel is important in its superinsulation performance. The resulting ultralight aerogel composite exhibits a density of 0.05 g/cm3, large strain recovery (over 50%), and low thermal conductivity (0.0224 W m-1 K-1), while its hydrophobicity is achieved by in situ trichlorosilane coating with the water contact angle of 135°. The hygroscopic tests of such aerogel composites demonstrate a reversible thermal insulation. The mechanical elasticity and stability of the anisotropic composites, with its soundproof performance, shed light on the low-cost superelastic aerogel manufacturing with scalability for energy saving building applications.
中文翻译:
全陶瓷,各向异性和柔性气凝胶绝缘材料。
为了利用各向异性热管理材料的高温超绝热潜力,将陶瓷气凝胶掺入对齐的结构网络中是必不可少的。然而,探索超轻型超绝缘陶瓷气凝胶的长期障碍是其机械弹性,稳定性和各向异性绝热性难以获得。在这项研究中,我们报告了一种可恢复的,具有各向异性层状结构的柔性陶瓷纤维-气凝胶复合材料,其中陶瓷纤维与气凝胶之间的界面交联在其超绝热性能中很重要。所得超轻气凝胶复合材料的密度为0.05 g / cm3,应变恢复率大(超过50%),导热系数低(0.0224 W m-1 K-1),它的疏水性是通过原位三氯硅烷涂层实现的,水接触角为135°。此类气凝胶复合材料的吸湿性测试表明可逆隔热性。各向异性复合材料的机械弹性和稳定性及其隔音性能,为低成本的超弹性气凝胶制造提供了亮点,并具有可扩展性,可用于节能建筑应用。
更新日期:2020-04-08
中文翻译:
全陶瓷,各向异性和柔性气凝胶绝缘材料。
为了利用各向异性热管理材料的高温超绝热潜力,将陶瓷气凝胶掺入对齐的结构网络中是必不可少的。然而,探索超轻型超绝缘陶瓷气凝胶的长期障碍是其机械弹性,稳定性和各向异性绝热性难以获得。在这项研究中,我们报告了一种可恢复的,具有各向异性层状结构的柔性陶瓷纤维-气凝胶复合材料,其中陶瓷纤维与气凝胶之间的界面交联在其超绝热性能中很重要。所得超轻气凝胶复合材料的密度为0.05 g / cm3,应变恢复率大(超过50%),导热系数低(0.0224 W m-1 K-1),它的疏水性是通过原位三氯硅烷涂层实现的,水接触角为135°。此类气凝胶复合材料的吸湿性测试表明可逆隔热性。各向异性复合材料的机械弹性和稳定性及其隔音性能,为低成本的超弹性气凝胶制造提供了亮点,并具有可扩展性,可用于节能建筑应用。