Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Molecular Picture of the Transient Nature of Lipid Rafts.
Langmuir ( IF 3.7 ) Pub Date : 2020-04-14 , DOI: 10.1021/acs.langmuir.0c00125 Dima Bolmatov 1, 2 , Dmytro Soloviov 3, 4, 5 , Mikhail Zhernenkov 6 , Dmitry Zav'yalov 7 , Eugene Mamontov 8 , Alexey Suvorov 6 , Yong Q Cai 6 , John Katsaras 1, 2
Langmuir ( IF 3.7 ) Pub Date : 2020-04-14 , DOI: 10.1021/acs.langmuir.0c00125 Dima Bolmatov 1, 2 , Dmytro Soloviov 3, 4, 5 , Mikhail Zhernenkov 6 , Dmitry Zav'yalov 7 , Eugene Mamontov 8 , Alexey Suvorov 6 , Yong Q Cai 6 , John Katsaras 1, 2
Affiliation
In biological membranes, lipid rafts are now thought to be transient and nanoscopic. However, the mechanism responsible for these nanoscopic assemblies remains poorly understood, even in the case of model membranes. As a result, it has proven extremely challenging to probe the physicochemical properties of lipid rafts at the molecular level. Here, we use all-atom molecular dynamics (MD) simulations and inelastic X-ray scattering (IXS), an intrinsically nanoscale technique, to directly probe the energy transfer and collective short-wavelength dynamics (phonons) of biologically relevant model membranes. We show that the nanoscale propagation of stress in lipid rafts takes place in the form of collective motions made up of longitudinal (compression waves) and transverse (shear waves) molecular vibrations. Importantly, we provide a molecular picture for the so-called van der Waals mediated "force from lipid" [Anishkin, A. et al. Proc. Natl. Acad. Sci. U.S.A. 2014, 111, 7898], a key parameter for the ionic channel mechano-transduction and the mechanism for the lipid transfer of molecular level stress [Aponte-Santamarı́a, C. et al. J. Am. Chem. Soc. 2017, 139, 13588]. Specifically, we describe how lipid rafts are formed and maintained through the propagation of molecular stress, lipid raft rattling dynamics, and a relaxation process. Eventually, the rafts dissipate through the self-diffusion of lipids making up the rafts. We also show that the molecular stress and viscoelastic properties of transient lipid rafts can be modulated through the use of hydrophobic biomolecules such as melatonin and tryptophan. Ultimately, the herein proposed mechanism describing the molecular interactions for the formation and dissolution of lipid rafts may offer insights as to how lipid rafts enable biological function.
中文翻译:
脂质筏的瞬时性质的分子图片。
在生物膜中,脂质筏现在被认为是瞬时的和纳米的。但是,即使在模型膜的情况下,对导致这些纳米组装的机理仍知之甚少。结果,证明在分子水平上探测脂筏的物理化学性质极具挑战性。在这里,我们使用全原子分子动力学(MD)模拟和固有的纳米级技术非弹性X射线散射(IXS),直接探测与生物学相关的模型膜的能量转移和集体短波长动力学(声子)。我们表明,脂质筏中应力的纳米级传播是以集体运动的形式发生的,该运动由纵向(压缩波)和横向(剪切波)分子振动组成。重要的,我们提供了所谓范德华斯介导的“来自脂质的力”的分子图片[Anishkin,A.等。进程 Natl。学院 科学 USA 2014,111,7898],离子通道机械转导的关键参数和分子水平应力的脂质转移机制[Aponte-Santamarı́a,C.等。J.上午 化学 Soc。2017,139,13588]。具体来说,我们描述了如何通过分子应力的传播,脂质筏的颤动动力学和松弛过程来形成和维持脂质筏。最终,筏通过构成筏的脂质的自我扩散而消散。我们还表明,瞬时脂质筏的分子应力和粘弹性能可以通过使用褪黑激素和色氨酸等疏水生物分子来调节。最终,
更新日期:2020-04-07
中文翻译:
脂质筏的瞬时性质的分子图片。
在生物膜中,脂质筏现在被认为是瞬时的和纳米的。但是,即使在模型膜的情况下,对导致这些纳米组装的机理仍知之甚少。结果,证明在分子水平上探测脂筏的物理化学性质极具挑战性。在这里,我们使用全原子分子动力学(MD)模拟和固有的纳米级技术非弹性X射线散射(IXS),直接探测与生物学相关的模型膜的能量转移和集体短波长动力学(声子)。我们表明,脂质筏中应力的纳米级传播是以集体运动的形式发生的,该运动由纵向(压缩波)和横向(剪切波)分子振动组成。重要的,我们提供了所谓范德华斯介导的“来自脂质的力”的分子图片[Anishkin,A.等。进程 Natl。学院 科学 USA 2014,111,7898],离子通道机械转导的关键参数和分子水平应力的脂质转移机制[Aponte-Santamarı́a,C.等。J.上午 化学 Soc。2017,139,13588]。具体来说,我们描述了如何通过分子应力的传播,脂质筏的颤动动力学和松弛过程来形成和维持脂质筏。最终,筏通过构成筏的脂质的自我扩散而消散。我们还表明,瞬时脂质筏的分子应力和粘弹性能可以通过使用褪黑激素和色氨酸等疏水生物分子来调节。最终,