当前位置:
X-MOL 学术
›
ACS Energy Lett.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Electrolyte-Additive-Driven Interfacial Engineering for High-Capacity Electrodes in Lithium-Ion Batteries: Promise and Challenges
ACS Energy Letters ( IF 19.3 ) Pub Date : 2020-04-07 , DOI: 10.1021/acsenergylett.0c00468 Koeun Kim 1 , Hyunsoo Ma 1 , Sewon Park 1 , Nam-Soon Choi 1
ACS Energy Letters ( IF 19.3 ) Pub Date : 2020-04-07 , DOI: 10.1021/acsenergylett.0c00468 Koeun Kim 1 , Hyunsoo Ma 1 , Sewon Park 1 , Nam-Soon Choi 1
Affiliation
Electrolyte additives have been explored to attain significant breakthroughs in the long-term cycling performance of lithium-ion batteries (LIBs) without sacrificing energy density; this has been achieved through the development of stable electrode interfacial structures and the elimination of reactive substances. Here we highlight the potential and the challenges raised by studies on electrolyte additives toward addressing the interfacially induced deterioration of high-capacity electrodes with a focus on Ni-rich layered oxides and Si, which are expected to satisfy the growing demands for high-energy-density batteries. We also discuss issues with the design of electrolyte additives for practical viability. A deep understanding of the roles of existing electrolyte additives depending on their functional groups will aid in the design of functional additive moieties capable of building robust interfacial layers, scavenging undesired reactive species, and suppressing the gas generation that causes safety hazards and shortened lifetimes of LIBs.
中文翻译:
锂离子电池大容量电极的电解质-添加剂驱动的界面工程:前景与挑战
已经探索了电解质添加剂,以在不牺牲能量密度的情况下在锂离子电池(LIB)的长期循环性能方面取得重大突破。这是通过开发稳定的电极界面结构和消除反应性物质来实现的。在这里,我们重点介绍了电解质添加剂研究在解决高电容电极的界面引起的变质问题上的潜力和挑战,重点是富镍层状氧化物和Si,它们有望满足对高能电极不断增长的需求。高密度电池。我们还讨论了为实现实用性而设计电解质添加剂的问题。
更新日期:2020-04-07
中文翻译:
锂离子电池大容量电极的电解质-添加剂驱动的界面工程:前景与挑战
已经探索了电解质添加剂,以在不牺牲能量密度的情况下在锂离子电池(LIB)的长期循环性能方面取得重大突破。这是通过开发稳定的电极界面结构和消除反应性物质来实现的。在这里,我们重点介绍了电解质添加剂研究在解决高电容电极的界面引起的变质问题上的潜力和挑战,重点是富镍层状氧化物和Si,它们有望满足对高能电极不断增长的需求。高密度电池。我们还讨论了为实现实用性而设计电解质添加剂的问题。