当前位置: X-MOL 学术Adv. Energy Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Thermally Chargeable Solid‐State Supercapacitor
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2016-07-05 , DOI: 10.1002/aenm.201600546
Suk Lae Kim 1 , Henry Taisun Lin 2 , Choongho Yu 1, 2
Affiliation  

Ubiquitous low‐grade thermal energy, which is typically wasted without use, can be extremely valuable for continuously powering electronic devices such as sensors and wearable electronics. A popular choice for waste heat recovery has been thermoelectric energy conversion, but small output voltage without energy‐storing capability necessitates additional components such as a voltage booster and a capacitor. Here, a novel method of simultaneously generating a large voltage from a temperature gradient and storing electrical energy without losing the benefit of solid‐state no‐moving part devices like conventional thermoelectrics is reported. Thermally driven ion diffusion is used to greatly increase the output voltage (8 mV K−1) with polystyrene sulfonic acid (PSSH) film. Polyaniline‐coated electrodes containing graphene and carbon nanotube sandwich the PSSH film where thermally induced voltage‐enabled electrochemical reactions, resulting in a charging behavior without an external power supply. With a small temperature difference (5 K) possibly created over wearable energy harvesting devices, the thermally chargeable supercapacitor produce 38 mV with a large areal capacitance (1200 F m−2). It is anticipated that the attempt with thermally driven ion diffusion behaviors initiates a new research direction in thermal energy harvesting.

中文翻译:

可热充电的固态超级电容器

无处不在的低等级热能通常会在不使用的情况下被浪费掉,这对于持续为传感器和可穿戴电子设备等电子设备供电是非常有价值的。余热回收的一种流行选择是热电能量转换,但是如果输出电压较小而又没有能量存储功能,则需要额外的组件,例如升压器和电容器。在此,报道了一种新颖的方法,该方法可同时从温度梯度产生大电压并存储电能,而又不会失去像传统热电一样的固态无移动部件的优势。热驱动离子扩散可大大提高输出电压(8 mV K -1)用聚苯乙烯磺酸(PSSH)膜。包含石墨烯和碳纳米管的聚苯胺涂层电极将PSSH膜夹在中间,在该处PSSH膜会发生热感应电压使能的电化学反应,从而导致充电行为而无需外部电源。由于在可穿戴式能量采集设备上可能会产生小的温差(5 K),可热充电的超级电容器产生38 mV的面积电容(1200 F m -2)。可以预料的是,热驱动离子扩散行为的尝试将为热能收集开辟新的研究方向。
更新日期:2016-07-05
down
wechat
bug