当前位置:
X-MOL 学术
›
J. Phys. Chem. Lett.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Photorelease Dynamics of Nitric Oxide from Cysteine-Bound Roussin's Red Ester.
The Journal of Physical Chemistry Letters ( IF 4.8 ) Pub Date : 2020-04-10 , DOI: 10.1021/acs.jpclett.0c00739 Hojeong Yoon 1 , Seongchul Park 1 , Manho Lim 1
The Journal of Physical Chemistry Letters ( IF 4.8 ) Pub Date : 2020-04-10 , DOI: 10.1021/acs.jpclett.0c00739 Hojeong Yoon 1 , Seongchul Park 1 , Manho Lim 1
Affiliation
Nitric oxide (NO) can either boost or impede the growth of cancer cells depending on its concentration. Therefore, any anticancer treatment using NO requires precisely controlled NO administration to the target cells in terms of dosage and timing. In this context, photochemically activated NO donors were actively explored, but their detailed NO-releasing dynamics, which is crucial for their use, is not known yet. We determined detailed photoexcitation dynamics of a stable, nontoxic, and water-soluble NO precursor, cysteine-bound Roussin's Red Ester (Cys-RRE), including secondary reactions of the nascent photoproducts. The primary quantum yields of the NO dissociation from the photoexcited Cys-RRE were found to be 24-54% depending on the excitation wavelength; however, the geminate rebinding of NO with the nascent radical reduced the level of biologically available NO to as low as 12%. Such information is useful to achieve efficient NO delivery to practical chemical and biological targets.
中文翻译:
半胱氨酸结合的鲁辛红酯的一氧化氮的光释放动力学。
一氧化氮(NO)可以促进或阻止癌细胞的生长,具体取决于其浓度。因此,任何使用NO的抗癌治疗都需要在剂量和时间方面精确控制NO向靶细胞的施用。在这种情况下,积极探索了光化学活化的NO供体,但尚不清楚其详细的NO释放动力学,这对于它们的使用至关重要。我们确定了稳定,无毒和水溶性NO前体,与半胱氨酸结合的鲁辛红酯(Cys-RRE)的详细光激发动力学,包括新生光产物的二次反应。从光激发的Cys-RRE上解离出来的NO的主要量子产率为24-54%,具体取决于激发波长。然而,NO与新生自由基的重新结合使生物可利用的NO含量降低至12%。这些信息对于实现向实际化学和生物学目标的有效NO传递很有用。
更新日期:2020-04-06
中文翻译:
半胱氨酸结合的鲁辛红酯的一氧化氮的光释放动力学。
一氧化氮(NO)可以促进或阻止癌细胞的生长,具体取决于其浓度。因此,任何使用NO的抗癌治疗都需要在剂量和时间方面精确控制NO向靶细胞的施用。在这种情况下,积极探索了光化学活化的NO供体,但尚不清楚其详细的NO释放动力学,这对于它们的使用至关重要。我们确定了稳定,无毒和水溶性NO前体,与半胱氨酸结合的鲁辛红酯(Cys-RRE)的详细光激发动力学,包括新生光产物的二次反应。从光激发的Cys-RRE上解离出来的NO的主要量子产率为24-54%,具体取决于激发波长。然而,NO与新生自由基的重新结合使生物可利用的NO含量降低至12%。这些信息对于实现向实际化学和生物学目标的有效NO传递很有用。