当前位置:
X-MOL 学术
›
Adv. Funct. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Defect Engineering in Carbon‐Based Electrocatalysts: Insight into Intrinsic Carbon Defects
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2020-04-03 , DOI: 10.1002/adfm.202001097 Jiawei Zhu 1 , Shichun Mu 1
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2020-04-03 , DOI: 10.1002/adfm.202001097 Jiawei Zhu 1 , Shichun Mu 1
Affiliation
Functionalized carbon nanomaterials, as significant options for renewable energy systems, are widely utilized in diversified electrochemical reactions in virtue of property advantages. The inevitable defect sites in architectures greatly affect physicochemical properties of carbon nanomaterials, thus defect engineering has recently become a vital research orientation of carbon‐based electrocatalysts. The intentionally introduced intrinsic carbon defect sites in the frameworks can directly serve as the potential active sites owing to the altered surface charge state, modulated adsorption free energy of key intermediates, as well as diminished bandgap. Furthermore, the synergistic sites between intrinsic defects and heteroatom dopants/captured atomic metal species can further optimize the electronic structure and adsorption/desorption behavior, making carbon‐based catalysts comparable to commercial precious metal catalysts in electrocatalysis. With pressing research demands, the common configurations, construction strategies, structure–activity relationships, and characterization methods for intrinsic carbon defect‐involved catalytic centers are systematically summarized. Such theoretical and experimental evidences of intrinsic defect‐induced activity can reveal the active centers and relevant catalytic mechanism, thereby providing necessary guidance for the design and construction of highly efficient carbon‐based electrocatalysts and promoting their commercial applications.
中文翻译:
碳基电催化剂的缺陷工程:洞悉内在的碳缺陷
功能化碳纳米材料作为可再生能源系统的重要选择,凭借其性能优势,被广泛用于各种电化学反应中。结构中不可避免的缺陷位点极大地影响了碳纳米材料的理化性质,因此缺陷工程近来已成为碳基电催化剂的重要研究方向。由于表面电荷状态的改变,关键中间体的吸附自由能的调节以及带隙的减小,有意引入框架中的固有碳缺陷位点可以直接充当潜在的活性位点。此外,固有缺陷与杂原子掺杂剂/捕获的原子金属种类之间的协同位点可以进一步优化电子结构和吸附/解吸行为,使碳基催化剂在电催化方面可与商业贵金属催化剂媲美。随着迫切的研究需求,系统地总结了固有碳缺陷涉及的催化中心的常见构型,构建策略,构效关系以及表征方法。这种由内在缺陷引起的活性的理论和实验证据可以揭示活性中心和相关的催化机理,从而为高效的碳基电催化剂的设计和构建以及促进其商业应用提供必要的指导。总结了固有碳缺陷参与催化中心的表征方法。这种由内在缺陷引起的活性的理论和实验证据可以揭示活性中心和相关的催化机理,从而为高效的碳基电催化剂的设计和构建以及促进其商业应用提供必要的指导。总结了固有碳缺陷参与催化中心的表征方法。这种由内在缺陷引起的活性的理论和实验证据可以揭示活性中心和相关的催化机理,从而为高效的碳基电催化剂的设计和构建以及促进其商业应用提供必要的指导。
更新日期:2020-04-03
中文翻译:
碳基电催化剂的缺陷工程:洞悉内在的碳缺陷
功能化碳纳米材料作为可再生能源系统的重要选择,凭借其性能优势,被广泛用于各种电化学反应中。结构中不可避免的缺陷位点极大地影响了碳纳米材料的理化性质,因此缺陷工程近来已成为碳基电催化剂的重要研究方向。由于表面电荷状态的改变,关键中间体的吸附自由能的调节以及带隙的减小,有意引入框架中的固有碳缺陷位点可以直接充当潜在的活性位点。此外,固有缺陷与杂原子掺杂剂/捕获的原子金属种类之间的协同位点可以进一步优化电子结构和吸附/解吸行为,使碳基催化剂在电催化方面可与商业贵金属催化剂媲美。随着迫切的研究需求,系统地总结了固有碳缺陷涉及的催化中心的常见构型,构建策略,构效关系以及表征方法。这种由内在缺陷引起的活性的理论和实验证据可以揭示活性中心和相关的催化机理,从而为高效的碳基电催化剂的设计和构建以及促进其商业应用提供必要的指导。总结了固有碳缺陷参与催化中心的表征方法。这种由内在缺陷引起的活性的理论和实验证据可以揭示活性中心和相关的催化机理,从而为高效的碳基电催化剂的设计和构建以及促进其商业应用提供必要的指导。总结了固有碳缺陷参与催化中心的表征方法。这种由内在缺陷引起的活性的理论和实验证据可以揭示活性中心和相关的催化机理,从而为高效的碳基电催化剂的设计和构建以及促进其商业应用提供必要的指导。