当前位置: X-MOL 学术Mater. Chem. Front. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Understanding of copolymers containing pyridine and selenophene simultaneously and their polarity conversion in transistors
Materials Chemistry Frontiers ( IF 6.0 ) Pub Date : 2020-03-31 , DOI: 10.1039/c9qm00739c
So-Huei Kang 1, 2, 3, 4, 5 , Myeonggeun Han 6, 7, 8, 9 , Yongjoon Cho 1, 2, 3, 4, 5 , Jisu Hong 6, 7, 8, 9 , Seongmin Heo 6, 7, 8, 9 , Seonghun Jeong 1, 2, 3, 4, 5 , Yong-Young Noh 6, 7, 8, 9 , Changduk Yang 1, 2, 3, 4, 5
Affiliation  

By simultaneously considering the powerful electron-accepting capability of pyridine and the strong selenophene (Se)–Se interaction of selenophene, we present here the design and synthesis of both pyridine and selenophene-containing, pyridine-flanked diketopyrrolopyrrole and 4,7-di(selenophen-2-yl)-2,1,3-benzothiadiazole-based copolymers (P1 and P2) for use in organic field-effect transistors, where P1 has a shorter branched position of the side chains in relation to the backbone as compared to P2. The structure–property relationships associated with branching point engineering in the copolymers are established by applying a range of technical analyses. Overall, P1 interestingly exhibits both a higher hole and electron mobility of up to 1.2 cm2 V−1 s−1 and 0.21 cm2 V−1 s−1, respectively, which are over one order of magnitude higher than that of P2. This observation demonstrates the opposite view of the branching points away from the backbone for high-performing organic field-effect transistors. Besides, by doping sodium bicarbonate and molybdenum trioxide with electrodes, we succeeded in affecting the transition from ambipolarity of P1 to unipolar n- and p-type characteristics, respectively. These findings improve our understanding of both the role of branching point engineering in enhancing the carrier transport and the use of doping for switching the polarity of P1.

中文翻译:

理解同时含有吡啶和硒烯的共聚物及其在晶体管中的极性转换

通过同时考虑吡啶的强电子接受能力和硒烯的强硒硒(Se)-Se相互作用,我们在此介绍吡啶和硒硒,吡啶侧翼的二酮吡咯并吡咯和4,7-di(用于有机场效应晶体管的硒代酚-2-基)-2,1,3-苯并噻二唑基共聚物(P1和P2),其中P1的侧链相对于主链的支链位置短于P2。通过应用一系列技术分析,可以确定与共聚物中支化点工程相关的结构-性质关系。总体而言,有趣的是,P1的空穴和电子迁移率均高达1.2 cm 2 V -1 s -1和分别为0.21cm 2 V -1 s -1和0.21cm 2 V -1 s -1,比P2高一个数量级。该观察结果表明,对于高性能有机场效应晶体管,分支点远离主干的情况相反。此外,通过用电极掺杂碳酸氢钠和三氧化钼,我们成功地影响了从P1的双极性到单极性n型和p型特性的转变。这些发现使我们对分支点工程在增强载流子传输中的作用以及使用掺杂来切换P1极性的理解都得到了理解。
更新日期:2020-04-24
down
wechat
bug