当前位置: X-MOL 学术Carbon › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Fabrication of high performance structural N-doped hierarchical porous carbon for supercapacitor
Carbon ( IF 10.5 ) Pub Date : 2020-08-01 , DOI: 10.1016/j.carbon.2020.03.044
Jinxiao Li , Kuihua Han , Dong Wang , Zhaocai Teng , Yang Cao , Jianhui Qi , Ming Li , Meimei Wang

Abstract In this paper, a method to fabricate structural N-doped hierarchical porous carbon is proposed. KOH and melamine are found to have synergistically impact on the pore-creating and nitrogen-doping process. The targeted product possesses specific surface area of 2642 m2 g−1 with a highly promoted inner surface area. The specific capacitance increases from 364 to 715 F g−1 at the current density of 1 A g−1 in a two-electrode system using 6 M KOH electrolyte. It also shows the good rate capability (526 F g−1 at 100 A g−1) and cycle performance (98.28% retention after 5000 cycles at 5 A g−1). The energy density reaches 118 W h kg−1 at the power density of 200 W kg−1. The high specific capacitance is mostly derived from the electrical double-layer capacitance, which is a significant advantage compared to the conventional surface doping. The nitrogen atoms stably embedded into the carbon skeleton. N-5 hindered the energy storage process, while N-Q showed obvious impact both on the specific capacitance and cycle performance. All in all, a high-performance electrode material for supercapacitor is provided in this study and it also provides a brand-new idea for the structural doping porous carbon.

中文翻译:

用于超级电容器的高性能结构 N 掺杂分级多孔碳的制备

摘要 本文提出了一种制备结构N掺杂分级多孔碳的方法。发现 KOH 和三聚氰胺对孔隙形成和氮掺杂过程具有协同影响。目标产品具有 2642 m2 g-1 的比表面积和高度提升的内表面积。在使用 6 M KOH 电解质的双电极系统中,当电流密度为 1 A g-1 时,比电容从 364 F g-1 增加到 715 F g-1。它还显示出良好的倍率性能(100 A g-1 时为 526 F g-1)和循环性能(5 A g-1 时 5000 次循环后保留率为 98.28%)。在 200 W kg-1 的功率密度下,能量密度达到 118 W h kg-1。高比电容主要来自双电层电容,与传统的表面掺杂相比,这是一个显着的优势。氮原子稳定嵌入碳骨架中。N-5阻碍了能量存储过程,而NQ对比电容和循环性能都有明显影响。总之,本研究提供了一种用于超级电容器的高性能电极材料,也为结构掺杂多孔碳提供了一个全新的思路。
更新日期:2020-08-01
down
wechat
bug