当前位置:
X-MOL 学术
›
J. Mater. Chem. A
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Graphene oxide membranes: controlling their transport pathways
Journal of Materials Chemistry A ( IF 10.7 ) Pub Date : 2020-03-26 , DOI: 10.1039/d0ta02249g Pengcheng Su 1, 2, 3, 4 , Fei Wang 1, 2, 3, 4 , Zhanjun Li 1, 2, 3, 4 , Chuyang Y. Tang 5, 6, 7, 8 , Wanbin Li 1, 2, 3, 4, 5
Journal of Materials Chemistry A ( IF 10.7 ) Pub Date : 2020-03-26 , DOI: 10.1039/d0ta02249g Pengcheng Su 1, 2, 3, 4 , Fei Wang 1, 2, 3, 4 , Zhanjun Li 1, 2, 3, 4 , Chuyang Y. Tang 5, 6, 7, 8 , Wanbin Li 1, 2, 3, 4, 5
Affiliation
Graphene oxide (GO) nanosheets with atomic thickness and tunable physicochemical properties have been considered as promising nanobuilding blocks for fabrication of separation membranes with impressive performance. There are two kinds of molecular transport channels in laminar GO membranes, interlayer nanochannels formed by adjacent nanosheets and intrinsic defects/pores/edges of GO nanosheets. It has been demonstrated that precisely controlling the transport pathways at the angstrom level, through reduction, molecule/cation cross-linking, intercalation, physical confinement, electric field adjustment, pore creation, and defect sealing, can greatly improve the separation performance of GO membranes. Herein, we first briefly review the fabrication strategies of GO membranes and then comprehensively discuss the merits and mechanisms of controlling the transport pathways of GO membranes for liquid separation applications including static diffusion, pressure-driven filtration, and pervaporation.
中文翻译:
氧化石墨烯膜:控制其传输途径
具有原子厚度和可调节理化特性的氧化石墨烯(GO)纳米片被认为是制造具有令人印象深刻的性能的分离膜的有前途的纳米构件。层状GO膜中有两种分子传输通道,即相邻纳米片形成的层间纳米通道和GO纳米片的固有缺陷/孔/边缘。已经证明,通过还原,分子/阳离子交联,插层,物理限制,电场调节,孔形成和缺陷密封来精确控制埃级的传输路径可以极大地改善GO膜的分离性能。在这里
更新日期:2020-03-26
中文翻译:
氧化石墨烯膜:控制其传输途径
具有原子厚度和可调节理化特性的氧化石墨烯(GO)纳米片被认为是制造具有令人印象深刻的性能的分离膜的有前途的纳米构件。层状GO膜中有两种分子传输通道,即相邻纳米片形成的层间纳米通道和GO纳米片的固有缺陷/孔/边缘。已经证明,通过还原,分子/阳离子交联,插层,物理限制,电场调节,孔形成和缺陷密封来精确控制埃级的传输路径可以极大地改善GO膜的分离性能。在这里