当前位置:
X-MOL 学术
›
ChemCatChem
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Efficient Separation of Photogenerated Charges in Sandwiched Bi2S3−BiOCl Nanoarrays/BiVO4 Nanosheets Composites for Enhanced Photocatalytic Activity
ChemCatChem ( IF 3.8 ) Pub Date : 2020-03-24 , DOI: 10.1002/cctc.202000271 Huali Li 1 , Yajie Chen 1 , Li Li 2 , He Liu 1 , Haiyu Jiang 1 , Lizhi Du 1 , Guohui Tian 1
ChemCatChem ( IF 3.8 ) Pub Date : 2020-03-24 , DOI: 10.1002/cctc.202000271 Huali Li 1 , Yajie Chen 1 , Li Li 2 , He Liu 1 , Haiyu Jiang 1 , Lizhi Du 1 , Guohui Tian 1
Affiliation
The development of cost‐efficient and feasible strategies for producing efficient photocatalysts is crucial to advance photocatalytic pollutants degradation. Herein, we report a high photocatalytic active hierarchical sandwiched Bi2S3−BiOCl nanoarrays/BiVO4 nanosheets composites fabricated using biomass‐derived BiVO4 porous nanosheets as starting substrate material. BiVO4 porous nanosheets were first prepared via an impregnation‐calcination process using biomass template method. Subsequently, the ion exchange reactions during solvothermal reaction realized the in situ nucleation and growth of Bi2S3 nanorods and BiOCl nanoflakes nanoarrays from both sides of BiVO4 porous nanosheets, resulting in the formation of hierarchical sandwiched Bi2S3−BiOCl nanoarrays/BiVO4 nanosheets composites. Specifically, well‐defined Bi2S3 nanorods and BiOCl nanoflakes nanoarrays are vertically grown on the surface of BiVO4 nanosheets to provide plenty of accessible active sites and enable visible light harvesting. The tight contact between different components promises fast electron transfer and excellent durability. Consequently, optimized sandwiched Bi2S3−BiOCl/BiVO4 composite exhibits superior photocatalytic activity for pollutants degradation.
中文翻译:
夹层式Bi2S3-BiOCl纳米阵列/ BiVO4纳米片复合材料中光生电荷的有效分离,以增强光催化活性
开发成本有效且可行的策略以生产有效的光催化剂对于促进光催化污染物的降解至关重要。在本文中,我们报道了一种高光催化活性的层状Bi 2 S 3 -BiOCl纳米阵列/ BiVO 4纳米片状复合材料,使用生物质衍生的BiVO 4多孔纳米片作为起始基质材料制备而成。首先使用生物质模板法通过浸渍煅烧过程制备BiVO 4多孔纳米片。随后,溶剂热反应过程中的离子交换反应实现了Bi 2 S 3的原位成核和生长。BiVO 4多孔纳米片的两面都形成纳米棒和BiOCl纳米薄片纳米阵列,从而形成分层的夹心Bi 2 S 3 -BiOCl纳米阵列/ BiVO 4纳米片复合材料。具体而言,定义明确的Bi 2 S 3纳米棒和BiOCl纳米薄片纳米阵列在BiVO 4纳米片的表面上垂直生长,以提供大量可访问的活性位点并实现可见光收集。不同组件之间的紧密接触保证了快速的电子传输和出色的耐久性。因此,优化的夹心Bi 2 S 3 -BiOCl / BiVO 4 复合材料对污染物的降解具有优异的光催化活性。
更新日期:2020-03-24
中文翻译:
夹层式Bi2S3-BiOCl纳米阵列/ BiVO4纳米片复合材料中光生电荷的有效分离,以增强光催化活性
开发成本有效且可行的策略以生产有效的光催化剂对于促进光催化污染物的降解至关重要。在本文中,我们报道了一种高光催化活性的层状Bi 2 S 3 -BiOCl纳米阵列/ BiVO 4纳米片状复合材料,使用生物质衍生的BiVO 4多孔纳米片作为起始基质材料制备而成。首先使用生物质模板法通过浸渍煅烧过程制备BiVO 4多孔纳米片。随后,溶剂热反应过程中的离子交换反应实现了Bi 2 S 3的原位成核和生长。BiVO 4多孔纳米片的两面都形成纳米棒和BiOCl纳米薄片纳米阵列,从而形成分层的夹心Bi 2 S 3 -BiOCl纳米阵列/ BiVO 4纳米片复合材料。具体而言,定义明确的Bi 2 S 3纳米棒和BiOCl纳米薄片纳米阵列在BiVO 4纳米片的表面上垂直生长,以提供大量可访问的活性位点并实现可见光收集。不同组件之间的紧密接触保证了快速的电子传输和出色的耐久性。因此,优化的夹心Bi 2 S 3 -BiOCl / BiVO 4 复合材料对污染物的降解具有优异的光催化活性。