当前位置:
X-MOL 学术
›
Int. J. Energy Res.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Microencapsulation of a eutectic PCM using in situ polymerization technique for thermal energy storage
International Journal of Energy Research ( IF 4.3 ) Pub Date : 2020-01-23 , DOI: 10.1002/er.5182 Srinivasaraonaik B 1 , Lok Pratap Singh 1 , Inderjeet Tyagi 1, 2 , Anujay Rawat 3 , Shishir Sinha 4
International Journal of Energy Research ( IF 4.3 ) Pub Date : 2020-01-23 , DOI: 10.1002/er.5182 Srinivasaraonaik B 1 , Lok Pratap Singh 1 , Inderjeet Tyagi 1, 2 , Anujay Rawat 3 , Shishir Sinha 4
Affiliation
In the present work, microencapsulated phase change material (M‐PCM) has been synthesized with eutectic mixture (75% SA + 25% CA) as core and melamine formaldehyde (MF) as shell using in situ polymerization. Advanced instrumental techniques like field emission scanning electron microscopy (FE‐SEM), Fourier‐transform infrared spectroscopy (FT‐IR), particle size analyzer (PSA), thermogravimetric/differential thermal analysis (TG/DTA), differential scanning calorimetry (DSC), and thermal conductivity analyzer (TCi) were used to characterize the synthesized M‐PCM, and impact of effective parameters like pH and agitator speed on the encapsulation process was also elucidated. Results obtained reveal that at the optimized pH (3.2) and agitator speed (1500 rpm) M‐PCM possess smooth surface morphology, spherical in shape with particle size of 10.41 μm. Based on FT‐IR analysis, it was observed that the synthesized M‐PCM was uniformly encapsulated by MF resin with eutectic mixture in the core. The encapsulation process results in the improvement of the thermal stability of eutectic mixture, it increases from 202.5 to 212.3°C, and the encapsulation efficiency of the M‐PCM is found to be 85.3%. The melting point and latent heat of fusion of M‐PCM were found to be 34.5°C and 103.9 kJ/kg, respectively.
中文翻译:
使用原位聚合技术将共晶PCM微囊化以储热
在目前的工作中,采用原位聚合反应,以低共熔混合物(75%SA + 25%CA)为核,三聚氰胺甲醛(MF)为壳,合成了微囊化相变材料(M-PCM)。先进的仪器技术,例如场发射扫描电子显微镜(FE‐SEM),傅立叶变换红外光谱(FT‐IR),粒度分析仪(PSA),热重/差热分析(TG / DTA),差示扫描量热法(DSC) ,和热导分析仪(TCi)用来表征合成的M-PCM,并且还阐明了有效参数(如pH和搅拌速度)对封装过程的影响。获得的结果表明,在最佳pH(3.2)和搅拌速度(1500 rpm)下,M-PCM具有光滑的表面形态,呈球形,粒径为10.41μm。根据FT-IR分析,可以观察到合成的M-PCM被MF树脂均匀包裹并在芯中形成共晶混合物。封装过程改善了共晶混合物的热稳定性,从202.5℃上升到212.3℃,M‐PCM的封装效率为85.3%。发现M‐PCM的熔点和潜热分别为34.5°C和103.9 kJ / kg。
更新日期:2020-01-23
中文翻译:
使用原位聚合技术将共晶PCM微囊化以储热
在目前的工作中,采用原位聚合反应,以低共熔混合物(75%SA + 25%CA)为核,三聚氰胺甲醛(MF)为壳,合成了微囊化相变材料(M-PCM)。先进的仪器技术,例如场发射扫描电子显微镜(FE‐SEM),傅立叶变换红外光谱(FT‐IR),粒度分析仪(PSA),热重/差热分析(TG / DTA),差示扫描量热法(DSC) ,和热导分析仪(TCi)用来表征合成的M-PCM,并且还阐明了有效参数(如pH和搅拌速度)对封装过程的影响。获得的结果表明,在最佳pH(3.2)和搅拌速度(1500 rpm)下,M-PCM具有光滑的表面形态,呈球形,粒径为10.41μm。根据FT-IR分析,可以观察到合成的M-PCM被MF树脂均匀包裹并在芯中形成共晶混合物。封装过程改善了共晶混合物的热稳定性,从202.5℃上升到212.3℃,M‐PCM的封装效率为85.3%。发现M‐PCM的熔点和潜热分别为34.5°C和103.9 kJ / kg。