当前位置:
X-MOL 学术
›
Chem. Sci.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Design of a core–shell catalyst: an effective strategy for suppressing side reactions in syngas for direct selective conversion to light olefins
Chemical Science ( IF 7.6 ) Pub Date : 2020-03-18 , DOI: 10.1039/c9sc05544d Li Tan 1, 2 , Fan Wang 3 , Peipei Zhang 2 , Yuichi Suzuki 2 , Yingquan Wu 4 , Jiangang Chen 4 , Guohui Yang 2, 4 , Noritatsu Tsubaki 2
Chemical Science ( IF 7.6 ) Pub Date : 2020-03-18 , DOI: 10.1039/c9sc05544d Li Tan 1, 2 , Fan Wang 3 , Peipei Zhang 2 , Yuichi Suzuki 2 , Yingquan Wu 4 , Jiangang Chen 4 , Guohui Yang 2, 4 , Noritatsu Tsubaki 2
Affiliation
An elegant catalyst is designed via the encapsulation of metallic oxide Zn–Cr inside of zeolite SAPO34 as a core–shell structure (Zn–Cr@SAPO) to realize the coupling of methanol-synthesis and methanol-to-olefin reactions. It can not only break through the limitation of the Anderson–Schulz–Flory distribution but can also overcome the disadvantages of physical mixture catalysts, such as excessive CO2 formation. The confinement effect, hierarchical structure and extremely short distance between the two active components result in the Zn–Cr@SAPO capsule catalyst having better mass transfer and diffusion with a boosted synergistic effect. Due to the difference between the adsorption energies of the Zn–Cr metallic oxide/SAPO zeolite physical mixture and capsule catalysts, the produced water and light olefins are easily removed from the Zn–Cr@SAPO capsule catalyst after formation, suppressing the side reactions. The light olefin space time yield (STY) of the capsule catalyst is more than twice that of the typical physical mixture catalyst. The designed capsule catalyst has superior potential for scale-up in industrial applications while simultaneously extending the capabilities of hybrid catalysts for other tandem catalysis reactions through this strategy.
中文翻译:
核壳催化剂的设计:抑制合成气副反应直接选择性转化为轻质烯烃的有效策略
通过将金属氧化物Zn-Cr封装在SAPO34沸石内部作为核壳结构(Zn-Cr@SAPO),设计了一种优雅的催化剂,以实现甲醇合成和甲醇制烯烃反应的耦合。它不仅可以突破Anderson-Schulz-Flory分布的限制,而且可以克服物理混合催化剂CO 2生成过多的缺点。限域效应、分级结构和两种活性组分之间极短的距离使得Zn-Cr@SAPO胶囊催化剂具有更好的传质和扩散,并增强协同效应。由于Zn-Cr金属氧化物/SAPO沸石物理混合物和胶囊催化剂的吸附能不同,生成的水和轻质烯烃在形成后很容易从Zn-Cr@SAPO胶囊催化剂中去除,抑制了副反应。胶囊催化剂的轻质烯烃时空产率(STY)是典型物理混合催化剂的两倍以上。所设计的胶囊催化剂具有在工业应用中扩大规模的巨大潜力,同时通过该策略扩展了混合催化剂用于其他串联催化反应的能力。
更新日期:2020-03-18
中文翻译:
核壳催化剂的设计:抑制合成气副反应直接选择性转化为轻质烯烃的有效策略
通过将金属氧化物Zn-Cr封装在SAPO34沸石内部作为核壳结构(Zn-Cr@SAPO),设计了一种优雅的催化剂,以实现甲醇合成和甲醇制烯烃反应的耦合。它不仅可以突破Anderson-Schulz-Flory分布的限制,而且可以克服物理混合催化剂CO 2生成过多的缺点。限域效应、分级结构和两种活性组分之间极短的距离使得Zn-Cr@SAPO胶囊催化剂具有更好的传质和扩散,并增强协同效应。由于Zn-Cr金属氧化物/SAPO沸石物理混合物和胶囊催化剂的吸附能不同,生成的水和轻质烯烃在形成后很容易从Zn-Cr@SAPO胶囊催化剂中去除,抑制了副反应。胶囊催化剂的轻质烯烃时空产率(STY)是典型物理混合催化剂的两倍以上。所设计的胶囊催化剂具有在工业应用中扩大规模的巨大潜力,同时通过该策略扩展了混合催化剂用于其他串联催化反应的能力。