Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Zn2+ Pre‐Intercalation Stabilizes the Tunnel Structure of MnO2 Nanowires and Enables Zinc‐Ion Hybrid Supercapacitor of Battery‐Level Energy Density
Small ( IF 13.0 ) Pub Date : 2020-03-16 , DOI: 10.1002/smll.202000091 Qiang Chen 1, 2 , Jialun Jin 1 , Zongkui Kou 2 , Cong Liao 1 , Ziang Liu 1 , Liang Zhou 1 , John Wang 2 , Liqiang Mai 1
Small ( IF 13.0 ) Pub Date : 2020-03-16 , DOI: 10.1002/smll.202000091 Qiang Chen 1, 2 , Jialun Jin 1 , Zongkui Kou 2 , Cong Liao 1 , Ziang Liu 1 , Liang Zhou 1 , John Wang 2 , Liqiang Mai 1
Affiliation
Although there has been tremendous progress in exploring new configurations of zinc‐ion hybrid supercapacitors (Zn‐HSCs) recently, the much lower energy density, especially the much lower areal energy density compared with that of the rechargeable battery, is still the bottleneck, which is impeding their wide applications in wearable devices. Herein, the pre‐intercalation of Zn2+ which gives rise to a highly stable tunnel structure of ZnxMnO2 in nanowire form that are grown on flexible carbon cloth with a disruptively large mass loading of 12 mg cm−2 is reported. More interestingly, the ZnxMnO2 nanowires of tunnel structure enable an ultrahigh areal energy density and power density, when they are employed as the cathode in Zn‐HSCs. The achieved areal capacitance of up to 1745.8 mF cm−2 at 2 mA cm−2, and the remarkable areal energy density of 969.9 µWh cm−2 are comparable favorably with those of Zn‐ion batteries. When integrated into a quasi‐solid‐state device, they also endow outstanding mechanical flexibility. The truly battery‐level Zn‐HSCs are timely in filling up of the battery‐supercapacitor gap, and promise applications in the new generation flexible and wearable devices.
中文翻译:
Zn2 +预嵌入可稳定MnO2纳米线的隧道结构,并能实现电池级能量密度的锌离子混合超级电容器
尽管最近在探索锌离子混合超级电容器(Zn-HSC)的新配置方面取得了巨大进展,但是与可再充电电池相比,更低的能量密度,尤其是更低的面能量密度仍然是瓶颈,阻碍了它们在可穿戴设备中的广泛应用。在此,据报道,Zn 2+的预插层产生了纳米线形式的Zn x MnO 2的高度稳定的隧道结构,该结构生长在具有12 mg cm -2的破坏性大质量负载的柔性碳布上。更有趣的是Zn x MnO 2当将其用作Zn-HSCs的阴极时,隧道结构的纳米线可实现超高的面能量密度和功率密度。在2 mA cm -2时达到的面积电容高达1745.8 mF cm -2,其显着的面能量密度为969.9 µWh cm -2,可与Zn离子电池相媲美。当集成到准固态设备中时,它们还具有出色的机械灵活性。真正的电池级Zn-HSC可以及时填补电池超级电容器的空白,并有望在新一代柔性和可穿戴设备中得到应用。
更新日期:2020-04-14
中文翻译:
Zn2 +预嵌入可稳定MnO2纳米线的隧道结构,并能实现电池级能量密度的锌离子混合超级电容器
尽管最近在探索锌离子混合超级电容器(Zn-HSC)的新配置方面取得了巨大进展,但是与可再充电电池相比,更低的能量密度,尤其是更低的面能量密度仍然是瓶颈,阻碍了它们在可穿戴设备中的广泛应用。在此,据报道,Zn 2+的预插层产生了纳米线形式的Zn x MnO 2的高度稳定的隧道结构,该结构生长在具有12 mg cm -2的破坏性大质量负载的柔性碳布上。更有趣的是Zn x MnO 2当将其用作Zn-HSCs的阴极时,隧道结构的纳米线可实现超高的面能量密度和功率密度。在2 mA cm -2时达到的面积电容高达1745.8 mF cm -2,其显着的面能量密度为969.9 µWh cm -2,可与Zn离子电池相媲美。当集成到准固态设备中时,它们还具有出色的机械灵活性。真正的电池级Zn-HSC可以及时填补电池超级电容器的空白,并有望在新一代柔性和可穿戴设备中得到应用。