Nature Energy ( IF 49.7 ) Pub Date : 2020-03-16 , DOI: 10.1038/s41560-020-0584-y Cheng Zhong , Bin Liu , Jia Ding , Xiaorui Liu , Yuwei Zhong , Yuan Li , Changbin Sun , Xiaopeng Han , Yida Deng , Naiqin Zhao , Wenbin Hu
Aqueous battery systems feature high safety, but they usually suffer from low voltage and low energy density, restricting their applications in large-scale storage. Here, we propose an electrolyte-decoupling strategy to maximize the full potential of Zn–MnO2 batteries by simultaneously enabling the optimal redox chemistry of both the Zn and MnO2 electrodes. The decoupled Zn–MnO2 battery exhibits an open-circuit voltage of 2.83 V (in contrast to the typical voltage of 1.5 V in conventional Zn–MnO2 batteries), as well as cyclability with only 2% capacity fading after deep cycling for 200 h. Benefiting from the full utilization of MnO2, the Zn–MnO2 battery is also able to maintain approximately 100% of its capacity at various discharge current densities. We also demonstrate the feasibility of integrating the Zn–MnO2 battery with a wind and photovoltaic hybrid power generating system. This electrolyte-decoupling strategy is shown to be applicable for other high-performance zinc-based aqueous batteries such as Zn–Cu and Zn–Ag batteries.
中文翻译:
使电解质与稳定的高能可充电含水锌锰二氧化锰电池分离
水电池系统具有高安全性,但是它们通常遭受低电压和低能量密度的困扰,从而限制了其在大规模存储中的应用。在这里,我们提出了一种电解质去耦策略,通过同时启用Zn和MnO 2电极的最佳氧化还原化学作用来最大化Zn-MnO 2电池的全部电势。解耦后的Zn-MnO 2电池的开路电压为2.83 V(与常规Zn-MnO 2电池的典型电压为1.5 V相比),并且在200次深度循环后容量仅有2%的褪色而具有可循环性H。受益于MnO 2的充分利用,Zn–MnO 2电池还能够在各种放电电流密度下保持大约100%的容量。我们还演示了将Zn-MnO 2电池与风力和光伏混合发电系统集成的可行性。事实证明,这种电解质去耦策略适用于其他高性能锌基水性电池,例如Zn-Cu和Zn-Ag电池。