当前位置:
X-MOL 学术
›
ACS Appl. Bio Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Antimicrobial Cellulose Nanofibril Porous Materials Obtained by Supercritical Impregnation of Thymol
ACS Applied Bio Materials ( IF 4.6 ) Pub Date : 2020-03-13 , DOI: 10.1021/acsabm.0c00033 Clémentine Darpentigny 1, 2, 3 , Pierre R Marcoux 1 , Mathilde Menneteau 1 , Bastien Michel 1 , Florence Ricoul 1 , Bruno Jean 2 , Julien Bras 3 , Guillaume Nonglaton 1
ACS Applied Bio Materials ( IF 4.6 ) Pub Date : 2020-03-13 , DOI: 10.1021/acsabm.0c00033 Clémentine Darpentigny 1, 2, 3 , Pierre R Marcoux 1 , Mathilde Menneteau 1 , Bastien Michel 1 , Florence Ricoul 1 , Bruno Jean 2 , Julien Bras 3 , Guillaume Nonglaton 1
Affiliation
This study presents the impregnation in supercritical carbon dioxide (scCO2) of nanocellulose-based structures with thymol as a natural antimicrobial molecule to prepare bioactive, biosourced materials. First, cellulose nanofibrils (CNFs) were used to produce four types of materials (nanopapers, cryogels from water or tert-butyl alcohol suspensions, and aerogels) of increasing specific surface area up to 160 m2·g–1, thanks to the use of different processes, namely, vacuum filtration, freeze-drying, and supercritical drying. Second, these CNF-based structures were impregnated with thymol in the scCO2 medium using a relatively low temperature and pressure of 40 °C and 100 bar during 1 h. The amount of impregnated thymol in the different CNF materials was investigated by fluorescence spectroscopy, 13C NMR analysis, and gas chromatography. All three methods consistently showed that the amount of impregnated thymol increases with the specific surface area of the material. The antimicrobial activity of the impregnated CNF-based materials was then measured against three reference strains of microorganisms: the Gram-negative Escherichia coli and Gram-positive Staphylococcus epidermidis bacteria, and the yeast Candida albicans using the disk diffusion test method. The latter revealed the leaching of thymol in sufficient amounts to generate antimicrobial activity against the three strains in the case of the cryogel derived from a tert-butyl alcohol suspension and the aerogel, which are the two materials exhibiting the highest specific surface areas. The proposed strategy, therefore, enabled us to precisely steer the amount of active molecule loading and the related antimicrobial activity by adjusting the specific surface area of the biosourced material impregnated in green supercritical conditions. These results are very promising and confirm that supercritical impregnation of active molecules onto nanocellulose three-dimensional (3D) structures can be an interesting solution for the design of active medical devices such as wound dressings.
中文翻译:
百里酚超临界浸渍抗菌纤维素纳米纤维多孔材料
本研究介绍了在超临界二氧化碳 (scCO 2 ) 中浸渍基于纳米纤维素的结构,并以百里酚作为天然抗菌分子来制备具有生物活性的生物源材料。首先,纤维素纳米纤丝 (CNF) 用于生产四种类型的材料(纳米纸、水或叔丁醇悬浮液冷冻凝胶和气凝胶),其比表面积增加至 160 m 2 ·g –1,这要归功于使用包括真空过滤、冷冻干燥和超临界干燥等不同工艺。其次,这些基于 CNF 的结构在 scCO 2中被百里酚浸渍在 1 小时内使用 40 °C 和 100 bar 的相对较低温度和压力的介质。通过荧光光谱、13 C NMR 分析和气相色谱法研究了不同 CNF 材料中浸渍的百里酚的量。所有三种方法一致表明浸渍百里酚的量随着材料的比表面积而增加。然后针对三种参考微生物菌株测量浸渍的 CNF 基材料的抗菌活性:革兰氏阴性大肠杆菌和革兰氏阳性表皮葡萄球菌,以及酵母白色念珠菌使用圆盘扩散测试方法。后者揭示了在源自叔叔的冷冻凝胶的情况下,百里酚的浸出量足以产生针对三种菌株的抗微生物活性。-丁醇悬浮液和气凝胶,它们是表现出最高比表面积的两种材料。因此,所提出的策略使我们能够通过调整浸渍在绿色超临界条件下的生物源材料的比表面积来精确控制活性分子负载量和相关的抗菌活性。这些结果非常有前景,并证实将活性分子超临界浸渍到纳米纤维素三维 (3D) 结构上可能是设计活性医疗器械(如伤口敷料)的有趣解决方案。
更新日期:2020-03-13
中文翻译:
百里酚超临界浸渍抗菌纤维素纳米纤维多孔材料
本研究介绍了在超临界二氧化碳 (scCO 2 ) 中浸渍基于纳米纤维素的结构,并以百里酚作为天然抗菌分子来制备具有生物活性的生物源材料。首先,纤维素纳米纤丝 (CNF) 用于生产四种类型的材料(纳米纸、水或叔丁醇悬浮液冷冻凝胶和气凝胶),其比表面积增加至 160 m 2 ·g –1,这要归功于使用包括真空过滤、冷冻干燥和超临界干燥等不同工艺。其次,这些基于 CNF 的结构在 scCO 2中被百里酚浸渍在 1 小时内使用 40 °C 和 100 bar 的相对较低温度和压力的介质。通过荧光光谱、13 C NMR 分析和气相色谱法研究了不同 CNF 材料中浸渍的百里酚的量。所有三种方法一致表明浸渍百里酚的量随着材料的比表面积而增加。然后针对三种参考微生物菌株测量浸渍的 CNF 基材料的抗菌活性:革兰氏阴性大肠杆菌和革兰氏阳性表皮葡萄球菌,以及酵母白色念珠菌使用圆盘扩散测试方法。后者揭示了在源自叔叔的冷冻凝胶的情况下,百里酚的浸出量足以产生针对三种菌株的抗微生物活性。-丁醇悬浮液和气凝胶,它们是表现出最高比表面积的两种材料。因此,所提出的策略使我们能够通过调整浸渍在绿色超临界条件下的生物源材料的比表面积来精确控制活性分子负载量和相关的抗菌活性。这些结果非常有前景,并证实将活性分子超临界浸渍到纳米纤维素三维 (3D) 结构上可能是设计活性医疗器械(如伤口敷料)的有趣解决方案。