Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Anisotropic Picosecond Spin-Photocurrent from Weyl Semimetal WTe2
ACS Nano ( IF 15.8 ) Pub Date : 2020-03-11 , DOI: 10.1021/acsnano.9b09828 Mengji Chen 1 , Kyusup Lee 1 , Jie Li 2 , Liang Cheng 3 , Qisheng Wang 1 , Kaiming Cai 1 , Elbert E. M. Chia 3 , Haixin Chang 2 , Hyunsoo Yang 1
ACS Nano ( IF 15.8 ) Pub Date : 2020-03-11 , DOI: 10.1021/acsnano.9b09828 Mengji Chen 1 , Kyusup Lee 1 , Jie Li 2 , Liang Cheng 3 , Qisheng Wang 1 , Kaiming Cai 1 , Elbert E. M. Chia 3 , Haixin Chang 2 , Hyunsoo Yang 1
Affiliation
The generation and detection of ultrafast spin current, preferably reaching a frequency up to terahertz, is the core of spintronics. Studies have shown that the Weyl semimetal WTe2 is of great potential in generating spin currents. However, the prior studies have been limited to the static measurements with the in-plane spin orientation. In this work, we demonstrate a picosecond spin-photocurrent in a Td-WTe2 thin film via a terahertz time domain spectroscopy with a circularly polarized laser excitation. The anisotropic dependence of the circular photogalvanic effect (CPGE) in the terahertz emission reveals that the picosecond spin-photocurrent is generated along the rotational asymmetry a-axis. Notably, the generated spins are aligned along the out-of-plane direction under the light normally incident to the film surface, which provides an efficient means to manipulate magnetic devices with perpendicular magnetic anisotropy. A spin-splitting band induced by intrinsic inversion symmetry breaking enables the manipulation of a spin current by modulating the helicity of the laser excitation. Moreover, CPGE nearly vanishes at a transition temperature of ∼175 K due to the carrier compensation. Our work provides an insight into the dynamic behavior of the anisotropic spin-photocurrent of Td-WTe2 in terahertz frequencies and shows a great potential for the future development of terahertz-spintronic devices with Weyl semimetals.
中文翻译:
Weyl Semimetal WTe 2的各向异性皮秒自旋光电流
自旋电子学的核心是产生和检测超快自旋电流,最好是达到高达太赫兹的频率。研究表明,Weyl半金属WTe 2在产生自旋电流方面具有巨大潜力。但是,先前的研究仅限于平面内旋转取向的静态测量。在这项工作中,我们通过圆偏振激光激发的太赫兹时域光谱证明了Td-WTe 2薄膜中的皮秒自旋光电流。太赫兹发射中圆形光电动效应(CPGE)的各向异性依赖性表明,沿旋转不对称a产生了皮秒自旋光电流-轴。值得注意的是,在通常入射到膜表面的光下,所产生的自旋沿面外方向排列,这提供了一种有效的手段来操纵具有垂直磁各向异性的磁器件。通过固有的反演对称性破坏引起的自旋分裂带,可以通过调制激光激发的螺旋度来控制自旋电流。此外,由于载流子补偿,CPGE在约175 K的转变温度下几乎消失。我们的工作提供了对Td-WTe 2各向异性自旋光电流在太赫兹频率下的动态行为的洞察力,并为具有Weyl半金属的太赫兹自旋电子器件的未来发展显示了巨大的潜力。
更新日期:2020-04-23
中文翻译:
Weyl Semimetal WTe 2的各向异性皮秒自旋光电流
自旋电子学的核心是产生和检测超快自旋电流,最好是达到高达太赫兹的频率。研究表明,Weyl半金属WTe 2在产生自旋电流方面具有巨大潜力。但是,先前的研究仅限于平面内旋转取向的静态测量。在这项工作中,我们通过圆偏振激光激发的太赫兹时域光谱证明了Td-WTe 2薄膜中的皮秒自旋光电流。太赫兹发射中圆形光电动效应(CPGE)的各向异性依赖性表明,沿旋转不对称a产生了皮秒自旋光电流-轴。值得注意的是,在通常入射到膜表面的光下,所产生的自旋沿面外方向排列,这提供了一种有效的手段来操纵具有垂直磁各向异性的磁器件。通过固有的反演对称性破坏引起的自旋分裂带,可以通过调制激光激发的螺旋度来控制自旋电流。此外,由于载流子补偿,CPGE在约175 K的转变温度下几乎消失。我们的工作提供了对Td-WTe 2各向异性自旋光电流在太赫兹频率下的动态行为的洞察力,并为具有Weyl半金属的太赫兹自旋电子器件的未来发展显示了巨大的潜力。