Scientific Reports ( IF 3.8 ) Pub Date : 2020-03-09 , DOI: 10.1038/s41598-020-61326-2 Chris L Adamson 1 , Bonnie Alexander 1 , Gareth Ball 1 , Richard Beare 1, 2 , Jeanie L Y Cheong 1, 3, 4 , Alicia J Spittle 1, 3, 5 , Lex W Doyle 1, 3, 4, 6 , Peter J Anderson 1, 6, 7 , Marc L Seal 1, 6 , Deanne K Thompson 1, 6, 8
Longitudinal studies measuring changes in cortical morphology over time are best facilitated by parcellation schemes compatible across all life stages. The Melbourne Children’s Regional Infant Brain (M-CRIB) and M-CRIB 2.0 atlases provide voxel-based parcellations of the cerebral cortex compatible with the Desikan-Killiany (DK) and the Desikan-Killiany-Tourville (DKT) cortical labelling schemes. This study introduces surface-based versions of the M-CRIB and M-CRIB 2.0 atlases, termed M-CRIB-S(DK) and M-CRIB-S(DKT), with a pipeline for automated parcellation utilizing FreeSurfer and developing Human Connectome Project (dHCP) tools. Using T2-weighted magnetic resonance images of healthy neonates (n = 58), we created average spherical templates of cortical curvature and sulcal depth. Manually labelled regions in a subset (n = 10) were encoded into the spherical template space to construct M-CRIB-S(DK) and M-CRIB-S(DKT) atlases. Labelling accuracy was assessed using Dice overlap and boundary discrepancy measures with leave-one-out cross-validation. Cross-validated labelling accuracy was high for both atlases (average regional Dice = 0.79–0.83). Worst-case boundary discrepancy instances ranged from 9.96–10.22 mm, which appeared to be driven by variability in anatomy for some cases. The M-CRIB-S atlas data and automatic pipeline allow extraction of neonatal cortical surfaces labelled according to the DK or DKT parcellation schemes.
中文翻译:
使用基于表面的墨尔本儿童区域婴儿脑图集(M-CRIB-S)分割新生儿皮质。
在所有生命阶段均兼容的细胞分裂方案可最好地促进对皮质形态随时间变化的纵向研究。墨尔本儿童区域婴儿大脑(M-CRIB)和M-CRIB 2.0地图集提供了基于体素的大脑皮层碎片,与Desikan-Killiany(DK)和Desikan-Killiany-Tourville(DKT)皮质标记方案兼容。这项研究介绍了称为M-CRIB-S(DK)和M-CRIB-S(DKT)的M-CRIB和M-CRIB 2.0地图集的基于表面的版本,以及使用FreeSurfer进行自动切分并开发人类Connectome的管道项目(dHCP)工具。使用健康新生儿的T 2加权磁共振图像(n = 58),我们创建了皮质曲率和沟深的平均球形模板。将子集中的手动标记区域(n = 10)编码到球形模板空间中,以构建M-CRIB-S(DK)和M-CRIB-S(DKT)地图集。使用骰子重叠和边界差异测量以及留一法交叉验证来评估标签准确性。两种地图集的交叉验证标签准确性均很高(平均区域骰子= 0.79–0.83)。最坏情况下的边界差异实例范围为9.96–10.22 mm,在某些情况下,这似乎是由于解剖结构的变化所致。M-CRIB-S地图集数据和自动管线允许提取根据DK或DKT分割方案标记的新生儿皮质表面。