当前位置:
X-MOL 学术
›
ACS Energy Lett.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Solar-Driven Metal Halide Perovskite Photocatalysis: Design, Stability, and Performance
ACS Energy Letters ( IF 19.3 ) Pub Date : 2020-03-06 , DOI: 10.1021/acsenergylett.0c00058 Haowei Huang 1 , Bapi Pradhan 2 , Johan Hofkens 2 , Maarten B. J. Roeffaers 1 , Julian A. Steele 1
ACS Energy Letters ( IF 19.3 ) Pub Date : 2020-03-06 , DOI: 10.1021/acsenergylett.0c00058 Haowei Huang 1 , Bapi Pradhan 2 , Johan Hofkens 2 , Maarten B. J. Roeffaers 1 , Julian A. Steele 1
Affiliation
The development of green, sustainable, and economical chemical processes represents a cornerstone challenge within chemistry today. Semiconductor heterogeneous photocatalysis is currently utilized within a wide variety of societally impactful processes, spanning reactions such as hydrogen production and CO2 conversion, to the organic transformation of raw materials for value-added chemicals. Metal halide perovskites (MHPs) have recently emerged as a new promising class of cheap and easy to make photocatalytic semiconductors, though their unstable ionically bound crystal structure has thus far restricted widespread application. In this Review, we examine the issues hampering MHP-based photocatalysis and highlight the general approaches being taken to achieve promising and stable photocatalytic reaction environments. Specifically, we outline the adoption of (1) halogen acid solutions (i.e., HX; X = I or Br) for hydrogen evolution reactions, (2) relatively low-polarity solvents for CO2 photoreduction and organic transformations, and (3) the encapsulation of perovskites for CO2 reduction and water splitting. Further, we detail the measures being taken to arrive at intrinsically stable photocatalytic materials, removing the need for atypical environments. With each technology offering unique sets of benefits and challenges, we conclude by outlining potentially promising opportunities and directions for metal halide perovskite-based photocatalysis research moving forward.
中文翻译:
太阳能驱动的金属卤化物钙钛矿光催化:设计,稳定性和性能
绿色,可持续,经济的化学工艺的发展代表了当今化学领域的基础性挑战。目前,在各种对社会有影响的过程中都使用了半导体异质光催化,这些过程涉及诸如氢气生产和CO 2等反应转化为增值化学品的原料有机转化。金属卤化物钙钛矿(MHP)最近已成为一类新的有前途的廉价且易于制造的光催化半导体,尽管迄今为止,其不稳定的离子结合晶体结构已限制了其广泛应用。在这篇综述中,我们研究了阻碍基于MHP的光催化的问题,并重点介绍了为实现有希望且稳定的光催化反应环境而采取的一般方法。具体来说,我们概述了(1)用于氢释放反应的卤酸溶液(即HX; X = I或Br);(2)用于CO 2光还原和有机转化的相对低极性溶剂;以及(3)钙钛矿对CO 2的包封减少和水分解。此外,我们详细介绍了为获得内在稳定的光催化材料而采取的措施,从而消除了对非典型环境的需求。每种技术都会带来独特的好处和挑战,因此在总结时,我们概述了基于钙钛矿金属卤化物的光催化研究的潜在机遇和方向。
更新日期:2020-04-23
中文翻译:
太阳能驱动的金属卤化物钙钛矿光催化:设计,稳定性和性能
绿色,可持续,经济的化学工艺的发展代表了当今化学领域的基础性挑战。目前,在各种对社会有影响的过程中都使用了半导体异质光催化,这些过程涉及诸如氢气生产和CO 2等反应转化为增值化学品的原料有机转化。金属卤化物钙钛矿(MHP)最近已成为一类新的有前途的廉价且易于制造的光催化半导体,尽管迄今为止,其不稳定的离子结合晶体结构已限制了其广泛应用。在这篇综述中,我们研究了阻碍基于MHP的光催化的问题,并重点介绍了为实现有希望且稳定的光催化反应环境而采取的一般方法。具体来说,我们概述了(1)用于氢释放反应的卤酸溶液(即HX; X = I或Br);(2)用于CO 2光还原和有机转化的相对低极性溶剂;以及(3)钙钛矿对CO 2的包封减少和水分解。此外,我们详细介绍了为获得内在稳定的光催化材料而采取的措施,从而消除了对非典型环境的需求。每种技术都会带来独特的好处和挑战,因此在总结时,我们概述了基于钙钛矿金属卤化物的光催化研究的潜在机遇和方向。