当前位置:
X-MOL 学术
›
Angew. Chem. Int. Ed.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Porous Tantalum Nitride Single Crystal at Two-Centimeter Scale with Enhanced Photoelectrochemical Performance.
Angewandte Chemie International Edition ( IF 16.1 ) Pub Date : 2020-03-04 , DOI: 10.1002/anie.202001204 Lu Jin 1 , Fangyuan Cheng 1 , Hao Li 1 , Kui Xie 1, 2, 3
Angewandte Chemie International Edition ( IF 16.1 ) Pub Date : 2020-03-04 , DOI: 10.1002/anie.202001204 Lu Jin 1 , Fangyuan Cheng 1 , Hao Li 1 , Kui Xie 1, 2, 3
Affiliation
Porous tantalum nitride (Ta3 N5 ) single crystals, combining structural coherence and porous microstructure, would substantially improve the photoelectrochemical performance. The structural coherence would reduce the recombination of charge carriers and maintain excellent transport properties while the porous microstructure would not only reduce photon scattering but also facilitate surface reactions. Here, we grow bulk-porous Ta3 N5 single crystals on a two-centimeter scale with (002), (023), and (041) facets, respectively, and show significantly enhanced photoelectrochemical performance. We show the preferential facet growth of porous crystals in a lattice reconstruction strategy in relation to lattice match and lattice channel. We present the facet engineering to enhance light absorption, exciton lifetime and transport properties. The porous Ta3 N5 single crystal boosts photoelectrochemical oxidation of alcohols with the (002) facet showing the highest performance of >99 % alcohol conversion and >99 % aldehyde/ketone selectivity.
中文翻译:
两厘米尺度的氮化钽多孔单晶,具有增强的光电化学性能。
氮化钽(Ta3 N5)多孔单晶体结合了结构相干性和多孔微结构,将大大提高光电化学性能。结构相干性将减少电荷载流子的重组并保持出色的传输性能,而多孔微结构不仅会减少光子散射,而且会促进表面反应。在这里,我们分别以(002),(023)和(041)切面在两厘米长的范围内生长块状Ta3 N5单晶,并显示出显着增强的光电化学性能。我们显示了相对于晶格匹配和晶格通道的晶格重构策略中多孔晶体的优先面生长。我们提出了可提高光吸收,激子寿命和传输性能的刻面工程。
更新日期:2020-03-04
中文翻译:
两厘米尺度的氮化钽多孔单晶,具有增强的光电化学性能。
氮化钽(Ta3 N5)多孔单晶体结合了结构相干性和多孔微结构,将大大提高光电化学性能。结构相干性将减少电荷载流子的重组并保持出色的传输性能,而多孔微结构不仅会减少光子散射,而且会促进表面反应。在这里,我们分别以(002),(023)和(041)切面在两厘米长的范围内生长块状Ta3 N5单晶,并显示出显着增强的光电化学性能。我们显示了相对于晶格匹配和晶格通道的晶格重构策略中多孔晶体的优先面生长。我们提出了可提高光吸收,激子寿命和传输性能的刻面工程。