当前位置:
X-MOL 学术
›
Acta Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Critical microstructures and defects in heterostructured materials and their effects on mechanical properties
Acta Materialia ( IF 8.3 ) Pub Date : 2020-05-01 , DOI: 10.1016/j.actamat.2020.03.001 Yanfang Liu , Yang Cao , Qingzhong Mao , Hao Zhou , Yonghao Zhao , Wei Jiang , Ying Liu , Jing Tao Wang , Zesheng You , Yuntian Zhu
Acta Materialia ( IF 8.3 ) Pub Date : 2020-05-01 , DOI: 10.1016/j.actamat.2020.03.001 Yanfang Liu , Yang Cao , Qingzhong Mao , Hao Zhou , Yonghao Zhao , Wei Jiang , Ying Liu , Jing Tao Wang , Zesheng You , Yuntian Zhu
Abstract Systematic study was conducted on the microstructures and mechanical properties of nickel samples with two distinct types of heterostructures. The first is featured with coarse-grained lamellae embedded in a matrix consisting of a very high density of dislocation structures. The second is featured with coarse-grained zones embedded in the ultrafine-grained matrix. The second type of heterostructures exhibits better strength and ductility, although it has a smaller average grain size than the first type. The zone boundaries in the second type of heterostructures are less prone to cracking than those in the first type. Intersecting micro-shear-bands formed net-like patterns in the second type of heterostructures during tensile deformation. This is the first ever observation of structural micro-shear-bands in a heterostructured material. It supports the claim that heterostructure promotes the formation of dispersive shear bands. In contrast, a macroscopic shear band formed and caused early failure of the sample with the first type of heterostructures. Our results indicate that well-developed ultrafine/nano grained matrix in heterostructured materials are necessary for preventing crack formation and shear band localization. This should be considered as a key factor for optimizing the mechanical properties of heterostructured materials.
中文翻译:
异质结构材料的关键微观结构和缺陷及其对力学性能的影响
摘要 系统研究了具有两种不同异质结构的镍样品的显微组织和力学性能。第一个特征是粗粒薄片嵌入由非常高密度的位错结构组成的矩阵中。第二个特征是在超细晶粒基体中嵌入了粗晶粒区域。第二种异质结构表现出更好的强度和延展性,尽管它的平均晶粒尺寸比第一种类型小。与第一类异质结构中的区域边界相比,第二类异质结构中的区域边界更不容易开裂。在拉伸变形过程中,相交的微剪切带在第二种异质结构中形成网状图案。这是对异质结构材料中结构微剪切带的首次观察。它支持异质结构促进分散剪切带形成的说法。相比之下,宏观剪切带形成并导致具有第一类异质结构的样品早期失效。我们的结果表明,异质结构材料中发育良好的超细/纳米晶粒基体对于防止裂纹形成和剪切带定位是必要的。这应该被视为优化异质结构材料机械性能的关键因素。我们的结果表明,异质结构材料中发育良好的超细/纳米晶粒基体对于防止裂纹形成和剪切带定位是必要的。这应该被视为优化异质结构材料机械性能的关键因素。我们的结果表明,异质结构材料中发育良好的超细/纳米晶粒基体对于防止裂纹形成和剪切带定位是必要的。这应该被视为优化异质结构材料机械性能的关键因素。
更新日期:2020-05-01
中文翻译:
异质结构材料的关键微观结构和缺陷及其对力学性能的影响
摘要 系统研究了具有两种不同异质结构的镍样品的显微组织和力学性能。第一个特征是粗粒薄片嵌入由非常高密度的位错结构组成的矩阵中。第二个特征是在超细晶粒基体中嵌入了粗晶粒区域。第二种异质结构表现出更好的强度和延展性,尽管它的平均晶粒尺寸比第一种类型小。与第一类异质结构中的区域边界相比,第二类异质结构中的区域边界更不容易开裂。在拉伸变形过程中,相交的微剪切带在第二种异质结构中形成网状图案。这是对异质结构材料中结构微剪切带的首次观察。它支持异质结构促进分散剪切带形成的说法。相比之下,宏观剪切带形成并导致具有第一类异质结构的样品早期失效。我们的结果表明,异质结构材料中发育良好的超细/纳米晶粒基体对于防止裂纹形成和剪切带定位是必要的。这应该被视为优化异质结构材料机械性能的关键因素。我们的结果表明,异质结构材料中发育良好的超细/纳米晶粒基体对于防止裂纹形成和剪切带定位是必要的。这应该被视为优化异质结构材料机械性能的关键因素。我们的结果表明,异质结构材料中发育良好的超细/纳米晶粒基体对于防止裂纹形成和剪切带定位是必要的。这应该被视为优化异质结构材料机械性能的关键因素。