当前位置:
X-MOL 学术
›
J. Comp. Neurol.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Crosstalk: The diversity of melanopsin ganglion cell types has begun to challenge the canonical divide between image-forming and non-image-forming vision.
The Journal of Comparative Neurology ( IF 2.3 ) Pub Date : 2020-01-31 , DOI: 10.1002/cne.24873 Katelyn B Sondereker 1 , Maureen E Stabio 2 , Jordan M Renna 1
The Journal of Comparative Neurology ( IF 2.3 ) Pub Date : 2020-01-31 , DOI: 10.1002/cne.24873 Katelyn B Sondereker 1 , Maureen E Stabio 2 , Jordan M Renna 1
Affiliation
Melanopsin ganglion cells have defied convention since their discovery almost 20 years ago. In the years following, many types of these intrinsically photosensitive retinal ganglion cells (ipRGCs) have emerged. In the mouse retina, there are currently six known types (M1–M6) of melanopsin ganglion cells, each with unique morphology, mosaics, connections, physiology, projections, and functions. While melanopsin‐expressing cells are usually associated with behaviors like circadian photoentrainment and the pupillary light reflex, the characterization of multiple types has demonstrated a reach that may extend far beyond non‐image‐forming vision. In fact, studies have shown that individual types of melanopsin ganglion cells have the potential to impact image‐forming functions like contrast sensitivity and color opponency. Thus, the goal of this review is to summarize the morphological and functional aspects of the six known types of melanopsin ganglion cells in the mouse retina and to highlight their respective roles in non‐image‐forming and image‐forming vision. Although many melanopsin ganglion cell types do project to image‐forming brain targets, it is important to note that this is only the first step in determining their influence on image‐forming vision. Even so, the visual system has canonically been divided into these two functional realms and melanopsin ganglion cells have begun to challenge the boundary between them, providing an overlap of visual information that is complementary rather than redundant. Further studies on these ganglion cell photoreceptors will no doubt continue to illustrate an ever‐expanding role for melanopsin ganglion cells in image‐forming vision.
中文翻译:
串扰:黑视素神经节细胞类型的多样性已经开始挑战图像形成和非图像形成视觉之间的规范划分。
自从近 20 年前被发现以来,黑视素神经节细胞已经打破常规。在接下来的几年中,出现了许多类型的这些本质上光敏性视网膜神经节细胞 (ipRGC)。在小鼠视网膜中,目前已知有六种已知类型(M1-M6)的黑视素神经节细胞,每一种都有独特的形态、镶嵌、连接、生理、投射和功能。虽然表达黑视蛋白的细胞通常与昼夜节律光夹带和瞳孔光反射等行为有关,但多种类型的表征表明其范围可能远远超出非成像视觉。事实上,研究表明,个别类型的黑视素神经节细胞有可能影响成像功能,如对比敏感度和颜色对比。因此,本综述的目的是总结小鼠视网膜中六种已知类型的黑视素神经节细胞的形态和功能方面,并强调它们各自在非成像和成像视觉中的作用。尽管许多黑视素神经节细胞类型确实投射到成像大脑目标,但重要的是要注意,这只是确定它们对成像视觉的影响的第一步。即便如此,视觉系统已被规范地划分为这两个功能领域,黑视素神经节细胞开始挑战它们之间的界限,提供互补而非冗余的视觉信息重叠。
更新日期:2020-01-31
中文翻译:
串扰:黑视素神经节细胞类型的多样性已经开始挑战图像形成和非图像形成视觉之间的规范划分。
自从近 20 年前被发现以来,黑视素神经节细胞已经打破常规。在接下来的几年中,出现了许多类型的这些本质上光敏性视网膜神经节细胞 (ipRGC)。在小鼠视网膜中,目前已知有六种已知类型(M1-M6)的黑视素神经节细胞,每一种都有独特的形态、镶嵌、连接、生理、投射和功能。虽然表达黑视蛋白的细胞通常与昼夜节律光夹带和瞳孔光反射等行为有关,但多种类型的表征表明其范围可能远远超出非成像视觉。事实上,研究表明,个别类型的黑视素神经节细胞有可能影响成像功能,如对比敏感度和颜色对比。因此,本综述的目的是总结小鼠视网膜中六种已知类型的黑视素神经节细胞的形态和功能方面,并强调它们各自在非成像和成像视觉中的作用。尽管许多黑视素神经节细胞类型确实投射到成像大脑目标,但重要的是要注意,这只是确定它们对成像视觉的影响的第一步。即便如此,视觉系统已被规范地划分为这两个功能领域,黑视素神经节细胞开始挑战它们之间的界限,提供互补而非冗余的视觉信息重叠。