Journal of Cleaner Production ( IF 9.7 ) Pub Date : 2017-12-22 , DOI: 10.1016/j.jclepro.2017.12.164
Boris Bonn , Erika von Schneidemesser , Tim Butler , Galina Churkina , Christian Ehlers , Rüdiger Grote , Dieter Klemp , Rainer Nothard , Klaus Schäfer , Albrecht von Stülpnagel , Andreas Kerschbaumer , Rasoul Yousefpour , Christos Fountoukis , Mark G. Lawrence
Tropospheric ozone and particulate matter affect human health and cause vegetation stress, dysfunction and damages. In this study we investigate the effect of increasing urban vegetation i.e. tree species on atmospheric chemistry, a potential urban management strategy to counteract high levels of local pollutants such as ozone, OH and PM10 caused by e.g. traffic. We use an extended version of an atmospheric chemistry box model including detailed gas-phase chemistry, mixing layer height variation and secondary organic aerosol calculations based on observations for Berlin, Germany. It is shown to accurately simulate the observed ozone volume mixing ratios during the intensive measurement period in July 2014 (BAERLIN2014) if basic parameters such as nitrogen oxides, meteorological conditions, PM10 concentrations as well as volatile organic compounds (VOCs) are considered as 1 h resolved datasets. Based on this setup the effects of changing present day vegetation mixture by 24 different relevant tree species and of urban greening is tested to elucidate benefits and drawbacks in order to support future urban planning. While the present day vegetation causes boundary layer ozone to decline slightly at 35 °C, individual tree types alter the ozone production rate and concentration as well as the secondary organic aerosol mass in different ways. Our results suggest that trees intensively emitting isoprene such as black locust, European oak and poplar result in higher ozone and total PM10 concentrations than at present, while tree species emitting primarily monoterpenes such as beech, magnolia and wayfaring trees yield less of both. This is in line with the similar behaviour of OH concentration and new particle formation rates. Thus, for future urban planning including urban greening, consideration of the beneficial and harmful aspects of tree species need to ensure that citizens benefit from and are not being negatively affected by climate adaptation strategies.
中文翻译:

营养排放对城市臭氧和生物成因的有机有机气溶胶的影响:德国柏林的Box模型研究
对流层臭氧和颗粒物影响人类健康,并导致植被压力,功能障碍和破坏。在这项研究中,我们调查了增加城市植被(即树木)对大气化学的影响,这是一种潜在的城市管理策略,可应对因交通等引起的高水平本地污染物(如臭氧,OH和PM 10)。我们使用大气化学箱模型的扩展版本,其中包括详细的气相化学,混合层高度变化和基于对德国柏林的观测得出的二次有机气溶胶计算。结果表明,如果基本参数(例如氮氧化物,气象条件,PM 10)在2014年7月的密集测量期间(BAERLIN2014)准确地模拟了观测到的臭氧体积混合比。浓度以及挥发性有机化合物(VOC)被视为1小时分辨数据集。在此设置的基础上,测试了通过24种不同的相关树种改变当今植被混合物以及城市绿化的效果,以阐明其利弊,以支持未来的城市规划。虽然当今的植被使边界层臭氧在35°C时略有下降,但个别树木类型以不同方式改变了臭氧的产生速率和浓度以及次生有机气溶胶质量。我们的结果表明,大量释放异戊二烯的树木(例如刺槐,欧洲橡树和杨树)会导致较高的臭氧含量和总PM 10浓度比目前要高,而主要排放单萜类的树种(例如山毛榉,木兰和行道树)则两者都较少。这与OH浓度和新颗粒形成速率的相似行为一致。因此,对于包括城市绿化在内的未来城市规划,需要考虑树木种类的有益和有害方面,以确保公民从气候适应战略中受益并不受其不利影响。