当前位置: X-MOL 学术J. Anal. Appl. Pyrol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Effect of temperature and heating rate on limonene production from waste tyre pyrolysis
Journal of Analytical and Applied Pyrolysis ( IF 5.8 ) Pub Date : 2016-07-01 , DOI: 10.1016/j.jaap.2016.04.019
N.M. Mkhize , P. van der Gryp , B. Danon , J.F. Görgens

Abstract The effect of pyrolysis temperature and heating rate on limonene production during waste tyre pyrolysis was investigated using gram-scale (fixed-bed) and microgram-scale (TGA) pyrolysis reactors. The investigation was carried out with final pyrolysis temperatures between 350 and 550 °C and heating rates in the range of 5–25 °C/min. Only the effect of the pyrolysis temperature was significant on the tyre derived oil (TDO) yield, while the effects of both pyrolysis temperature and heating rate were significant on the chemical composition of the TDO, i.e., limonene yield. In the gram-scale reactor, a maximum limonene yield was obtained at a pyrolysis temperature of 475 °C and a heating rate of 20 °C/min, with a value of 7.62 wt.% (based on the steel- and fabric-free tyre) or 22 wt.% (based on the polyisoprene content of the tyre). DTG curves showed that increasing the heating rate led to (1) a decrease in secondary degradation reactions, and (2) an increased temperature at the maximum depolymerisation rate. At the same heating rate, MS ion current signals showed that limonene formation occurred at slightly higher temperatures compared to isoprene formation, indicating a slight higher activation energy for the former reaction. Since a higher activation energy indicates a stronger temperature dependency for a reaction, it implies, in combination with the observation of higher temperatures at maximum limonene production rate in the MS ion current signal, an improvement of the selectivity of polyisoprene depolymerisation towards limonene.

中文翻译:

温度和升温速率对废轮胎热解生产柠檬烯的影响

摘要 使用克级(固定床)和微克级(TGA)热解反应器研究了热解温度和加热速率对废轮胎热解过程中柠檬烯产量的影响。研究的最终热解温度在 350 到 550 °C 之间,加热速率在 5–25 °C/min 的范围内。仅热解温度对轮胎衍生油(TDO)产率的影响显着,而热解温度和加热速率对TDO的化学组成即柠檬烯产率的影响均显着。在克级反应器中,在 475 °C 的热解温度和 20 °C/min 的加热速率下获得最大的柠檬烯产率,值为 7.62 wt.%(基于无钢和无织物)轮胎)或 22 重量%(基于轮胎的聚异戊二烯含量)。DTG 曲线表明,增加加热速率导致(1)二次降解反应减少,(2)在最大解聚速率下温度升高。在相同的加热速率下,MS 离子电流信号显示,与异戊二烯的形成相比,柠檬烯的形成发生在略高的温度下,表明前一反应的活化能略高。由于更高的活化能表明反应的温度依赖性更强,这意味着,结合 MS 离子电流信号中在最大柠檬烯生产速率下观察到的更高温度,聚异戊二烯解聚对柠檬烯的选择性提高。(2) 在最大解聚速率下升高温度。在相同的加热速率下,MS 离子电流信号显示,与异戊二烯的形成相比,柠檬烯的形成发生在略高的温度下,表明前一反应的活化能略高。由于更高的活化能表明反应的温度依赖性更强,这意味着,结合 MS 离子电流信号中在最大柠檬烯生产速率下观察到的更高温度,聚异戊二烯解聚对柠檬烯的选择性提高。(2) 在最大解聚速率下升高温度。在相同的加热速率下,MS 离子电流信号显示,与异戊二烯的形成相比,柠檬烯的形成发生在略高的温度下,表明前一反应的活化能略高。由于更高的活化能表明反应的温度依赖性更强,这意味着,结合 MS 离子电流信号中在最大柠檬烯生产速率下观察到的更高温度,聚异戊二烯解聚对柠檬烯的选择性提高。
更新日期:2016-07-01
down
wechat
bug