当前位置:
X-MOL 学术
›
Adv. Funct. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Accelerating CO2 Electroreduction to CO Over Pd Single‐Atom Catalyst
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2020-03-01 , DOI: 10.1002/adfm.202000407 Qun He 1, 2 , Ji Hoon Lee 1 , Daobin Liu 3 , Yumeng Liu 1 , Zhexi Lin 1 , Zhenhua Xie 4 , Sooyeon Hwang 5 , Shyam Kattel 6 , Li Song 2 , Jingguang G. Chen 1, 4
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2020-03-01 , DOI: 10.1002/adfm.202000407 Qun He 1, 2 , Ji Hoon Lee 1 , Daobin Liu 3 , Yumeng Liu 1 , Zhexi Lin 1 , Zhenhua Xie 4 , Sooyeon Hwang 5 , Shyam Kattel 6 , Li Song 2 , Jingguang G. Chen 1, 4
Affiliation
The electrochemical conversion of carbon dioxide (CO2) into value‐added chemicals is regarded as one of the promising routes to mitigate CO2 emission. A nitrogen‐doped carbon‐supported palladium (Pd) single‐atom catalyst that can catalyze CO2 into CO with far higher mass activity than its Pd nanoparticle counterpart, for example, 373.0 and 28.5 mA mg−1Pd, respectively, at −0.8 V versus reversible hydrogen electrode, is reported. A combination of in situ X‐ray characterization and density functional theory (DFT) calculation reveals that the PdN4 site is the most likely active center for CO production without the formation of palladium hydride (PdH), which is essential for typical Pd nanoparticle catalysts. Furthermore, the well‐dispersed PdN4 single‐atom site facilitates the stabilization of the adsorbed CO2 intermediate, thereby enhancing electrocatalytic CO2 reduction capability at low overpotentials. This work provides important insights into the structure‐activity relationship for single‐atom based electrocatalysts.
中文翻译:
在Pd单原子催化剂上加速将CO2电还原为CO
二氧化碳(CO 2)电化学转化为增值化学品被认为是减轻CO 2排放的有前途的途径之一。氮掺杂的碳载钯(Pd)单原子催化剂可以将CO 2催化成质量比其Pd纳米颗粒对应物高得多的CO,例如在−0.8时分别为373.0和28.5 mA mg -1 Pd。报道了V相对于可逆氢电极。原位X射线表征和密度泛函理论的组合(DFT)计算表明,钯 Ñ 4该位点是最可能的CO生产活性中心,而不会形成氢化钯(PdH),而氢化钯对于典型的Pd纳米颗粒催化剂而言必不可少。此外,良好分散的Pd Ñ 4单原子位点有利于吸附的CO的稳定2中间,从而提高电CO 2还原能力在低超电势。这项工作为基于单原子的电催化剂的结构活性关系提供了重要的见识。
更新日期:2020-04-21
中文翻译:
在Pd单原子催化剂上加速将CO2电还原为CO
二氧化碳(CO 2)电化学转化为增值化学品被认为是减轻CO 2排放的有前途的途径之一。氮掺杂的碳载钯(Pd)单原子催化剂可以将CO 2催化成质量比其Pd纳米颗粒对应物高得多的CO,例如在−0.8时分别为373.0和28.5 mA mg -1 Pd。报道了V相对于可逆氢电极。原位X射线表征和密度泛函理论的组合(DFT)计算表明,钯 Ñ 4该位点是最可能的CO生产活性中心,而不会形成氢化钯(PdH),而氢化钯对于典型的Pd纳米颗粒催化剂而言必不可少。此外,良好分散的Pd Ñ 4单原子位点有利于吸附的CO的稳定2中间,从而提高电CO 2还原能力在低超电势。这项工作为基于单原子的电催化剂的结构活性关系提供了重要的见识。