当前位置:
X-MOL 学术
›
Adv. Phys.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Harnessing symmetry to control quantum transport
Advances in Physics ( IF 35.0 ) Pub Date : 2018-01-02 , DOI: 10.1080/00018732.2018.1519981 D. Manzano 1 , P.I. Hurtado 1
Advances in Physics ( IF 35.0 ) Pub Date : 2018-01-02 , DOI: 10.1080/00018732.2018.1519981 D. Manzano 1 , P.I. Hurtado 1
Affiliation
Controlling transport in quantum systems holds the key to many promising quantum technologies. Here we review the power of symmetry as a resource to manipulate quantum transport and apply these ideas to engineer novel quantum devices. Using tools from open quantum systems and large deviation theory, we show that symmetry-mediated control of transport is enabled by a pair of twin dynamic phase transitions in current statistics, accompanied by a coexistence of different transport channels. By playing with the symmetry decomposition of the initial state, one can modulate the importance of the different transport channels and hence control the flowing current. Motivated by the problem of energy harvesting, we illustrate these ideas in open quantum networks, an analysis that leads to the design of a symmetry-controlled quantum thermal switch. We review an experimental setup recently proposed for symmetry-mediated quantum control in the lab based on a linear array of atom-doped optical cavities, and the possibility of using transport as a probe to uncover hidden symmetries, as recently demonstrated in molecular junctions, is also discussed. Other symmetry-mediated control mechanisms are also described. Overall, these results demonstrate the importance of symmetry not only as an organizing principle in physics but also as a tool to control quantum systems.
中文翻译:
利用对称性来控制量子传输
控制量子系统中的传输是许多有前途的量子技术的关键。在这里,我们回顾了对称性作为操纵量子传输的资源的力量,并将这些想法应用于设计新型量子设备。使用来自开放量子系统和大偏差理论的工具,我们表明对称介导的传输控制是通过电流统计中的一对孪生动态相变实现的,伴随着不同传输通道的共存。通过对初始状态进行对称分解,可以调节不同传输通道的重要性,从而控制流动的电流。受能量收集问题的启发,我们在开放量子网络中说明了这些想法,这种分析导致了对称控制量子热开关的设计。我们回顾了最近提出的基于原子掺杂光腔线性阵列的实验室中对称介导量子控制的实验装置,以及使用传输作为探针来揭示隐藏对称性的可能性,正如最近在分子结中所证明的那样,是还讨论了。还描述了其他对称介导的控制机制。总的来说,这些结果证明了对称性不仅作为物理学中的组织原则而且作为控制量子系统的工具的重要性。还描述了其他对称介导的控制机制。总的来说,这些结果证明了对称性不仅作为物理学中的组织原则而且作为控制量子系统的工具的重要性。还描述了其他对称介导的控制机制。总的来说,这些结果证明了对称性不仅作为物理学中的组织原则而且作为控制量子系统的工具的重要性。
更新日期:2018-01-02
中文翻译:
利用对称性来控制量子传输
控制量子系统中的传输是许多有前途的量子技术的关键。在这里,我们回顾了对称性作为操纵量子传输的资源的力量,并将这些想法应用于设计新型量子设备。使用来自开放量子系统和大偏差理论的工具,我们表明对称介导的传输控制是通过电流统计中的一对孪生动态相变实现的,伴随着不同传输通道的共存。通过对初始状态进行对称分解,可以调节不同传输通道的重要性,从而控制流动的电流。受能量收集问题的启发,我们在开放量子网络中说明了这些想法,这种分析导致了对称控制量子热开关的设计。我们回顾了最近提出的基于原子掺杂光腔线性阵列的实验室中对称介导量子控制的实验装置,以及使用传输作为探针来揭示隐藏对称性的可能性,正如最近在分子结中所证明的那样,是还讨论了。还描述了其他对称介导的控制机制。总的来说,这些结果证明了对称性不仅作为物理学中的组织原则而且作为控制量子系统的工具的重要性。还描述了其他对称介导的控制机制。总的来说,这些结果证明了对称性不仅作为物理学中的组织原则而且作为控制量子系统的工具的重要性。还描述了其他对称介导的控制机制。总的来说,这些结果证明了对称性不仅作为物理学中的组织原则而且作为控制量子系统的工具的重要性。