当前位置: X-MOL 学术Optik › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The structural, electro-optical, charge transport and nonlinear optical properties of 2-[(3,5-dimethyl-1-phenyl-1H-pyrazol-4-yl)methylidene]indan-1,3-dione
Optik Pub Date : 2016-08-09 , DOI: 10.1016/j.ijleo.2016.08.007
Ahmad Irfan , Abdullah G. Al-Sehemi , Aijaz Rasool Chaudhry , Shabbir Muhammad , Abdullah M. Asiri

Pyrazole compounds are gaining noteworthy attention in our daily life from better biological active to the semiconducting materials. Present work deals in depth study of indigenously synthesized pyrazole compound, i.e., 2-[(3,5-dimethyl-1-phenyl-1H-pyrazol-4-yl)methylidene]indan-1,3-dione (DMPI) with respect to the structural, electronic, optical and charge transport properties. The ground and excited state geometries were optimized by applying density functional theory (DFT) and time dependent DFT, respectively. The frontier molecular orbitals (FMOs) have been spotlighted. The comprehensible intra-molecular charge transfer (ICT) from the highest occupied molecular orbital (HOMO) to the lowest unoccupied molecular orbital (LUMO) was observed. The absorption and emission wavelengths were studied at the TD-B3LYP/6-31G** level of theory. The total and partial density of states (T/PDOS) has been studied to understanding the contribution of different states in the electronic properties. The ionization potentials (IP), electron affinities (EA), reorganization energies, transfer integrals, intrinsic mobility and structure-property relationship have been discussed intensively. The smaller hole reorganization energy and superior transfer integral values resulting improved hole intrinsic mobility than the electron ones is revealing that DMPI would be better hole transport material.



中文翻译:

2-[(3,5-二甲基-1-苯基-1H-吡唑-4-基)亚甲基]茚满-1,3-二酮的结构,电光,电荷传输和非线性光学性质

从更好的生物活性物质到半导体材料,吡唑化合物在我们的日常生活中正受到关注。目前的工作是深入研究本地合成的吡唑化合物,即2-[((3,5-二甲基-1-苯基-1H-吡唑-4-基)亚甲基]茚满-1,3-二酮(DMPI))的结构,电子,光学和电荷传输特性。基态和激发态的几何形状分别通过应用密度泛函理论(DFT)和与时间有关的DFT进行了优化。前沿分子轨道(FMO)已成为人们关注的焦点。观察到从最高占据分子轨道(HOMO)到最低未占据分子轨道(LUMO)的可理解的分子内电荷转移(ICT)。在TD-B3LYP / 6-31G **理论水平上研究了吸收和发射波长。已经研究了状态的总密度和部分密度(T / PDOS),以了解不同状态在电子特性中的作用。电离势(IP),电子亲和力(EA),重组能量,转移积分,内在迁移率和结构-属性关系已被广泛讨论。空穴重组能更小,转移积分值更高,从而导致空穴固有迁移率比电子空穴迁移率更高。DMPI将是更好的空穴传输材料。

更新日期:2016-08-09
down
wechat
bug