当前位置:
X-MOL 学术
›
ACS Appl. Nano Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Iridium Oxide Catalyst Supported on Antimony-Doped Tin Oxide for High Oxygen Evolution Reaction Activity in Acidic Media
ACS Applied Nano Materials ( IF 5.3 ) Pub Date : 2020-02-26 , DOI: 10.1021/acsanm.9b02230 Alexandra Hartig-Weiss 1 , Melanie Miller 1 , Hans Beyer 1 , Alexander Schmitt 1 , Armin Siebel 1 , Anna T. S. Freiberg 1 , Hubert A. Gasteiger 1 , Hany A. El-Sayed 1
ACS Applied Nano Materials ( IF 5.3 ) Pub Date : 2020-02-26 , DOI: 10.1021/acsanm.9b02230 Alexandra Hartig-Weiss 1 , Melanie Miller 1 , Hans Beyer 1 , Alexander Schmitt 1 , Armin Siebel 1 , Anna T. S. Freiberg 1 , Hubert A. Gasteiger 1 , Hany A. El-Sayed 1
Affiliation
Lowering of the oxygen evolution reaction (OER) noble metal catalyst loading on the anode of a polymer electrolyte membrane water electrolysis (PEMWE) is a necessity for enabling the large-scale hydrogen production based on this technology. This study introduces a remarkably active OER catalyst that is based on the dispersion of Ir nanoparticles on a highly conductive oxide support. The catalyst was designed in a way to combine all characteristics that have been reported to enhance the OER activity on an Ir oxide-based catalyst, including high catalyst dispersion and controlling the Ir catalyst particle size, so that this design approach provides both high surface area to Ir mass ratio and at the same time ensures maximum synergetic interaction with the oxide support, termed strong metal–support interaction (SMSI). This was achieved through using a high surface area (50 m2/g) and highly conductive antimony-doped tin oxide support (2 S/cm), where combining a high catalyst dispersion and maximum SMSI resulted in a very high OER activity of the Ir/ATO catalyst (≈1100 A/gIr, at 80 °C and 1.45 VRHE). This enhanced activity will allow a significant reduction (ca. 75-fold) in the precious metal catalyst loading when this catalyst is implemented in the anode of a PEMWE.
中文翻译:
掺杂锑的氧化锡负载的铱氧化物催化剂在酸性介质中的高氧释放反应活性
降低在聚合物电解质膜水电解(PEMWE)的阳极上的析氧反应(OER)贵金属催化剂是实现基于该技术的大规模制氢的必要条件。这项研究引入了一种具有显着活性的OER催化剂,该催化剂基于Ir纳米颗粒在高导电氧化物载体上的分散。该催化剂的设计方法结合了已报道的所有增强Ir氧化物基催化剂的OER活性的特性,包括高催化剂分散度和控制Ir催化剂粒径,因此该设计方法可提供高表面积与Ir的质量比,并同时确保与氧化物载体的最大协同作用,称为强金属-载体相互作用(SMSI)。2 / g)和高导电性的掺杂锑的氧化锡载体(2 S / cm),结合了高催化剂分散度和最大SMSI,导致Ir / ATO催化剂具有非常高的OER活性(≈1100A / g Ir,在80°C和1.45 V RHE时)。当这种催化剂用于PEMWE的阳极时,这种增强的活性将使贵金属催化剂的负载量显着降低(约75倍)。
更新日期:2020-02-26
中文翻译:
掺杂锑的氧化锡负载的铱氧化物催化剂在酸性介质中的高氧释放反应活性
降低在聚合物电解质膜水电解(PEMWE)的阳极上的析氧反应(OER)贵金属催化剂是实现基于该技术的大规模制氢的必要条件。这项研究引入了一种具有显着活性的OER催化剂,该催化剂基于Ir纳米颗粒在高导电氧化物载体上的分散。该催化剂的设计方法结合了已报道的所有增强Ir氧化物基催化剂的OER活性的特性,包括高催化剂分散度和控制Ir催化剂粒径,因此该设计方法可提供高表面积与Ir的质量比,并同时确保与氧化物载体的最大协同作用,称为强金属-载体相互作用(SMSI)。2 / g)和高导电性的掺杂锑的氧化锡载体(2 S / cm),结合了高催化剂分散度和最大SMSI,导致Ir / ATO催化剂具有非常高的OER活性(≈1100A / g Ir,在80°C和1.45 V RHE时)。当这种催化剂用于PEMWE的阳极时,这种增强的活性将使贵金属催化剂的负载量显着降低(约75倍)。