Applied Catalysis B: Environment and Energy ( IF 20.2 ) Pub Date : 2020-02-20 , DOI: 10.1016/j.apcatb.2020.118792 Yang Wang , Shun Kazumi , Weizhe Gao , Xinhua Gao , Hangjie Li , Xiaoyu Guo , Yoshiharu Yoneyama , Guohui Yang , Noritatsu Tsubaki
The direct conversion of CO2 to aromatics not only reduces carbon emissions but also provides an alternative way for value-added chemicals synthesis. Even though the hydrogenation of CO2 to aromatics has been realized via a methanol-mediated pathway or a modified Fischer-Tropsch synthesis route, low yield of aromatics is still the bottleneck of this strategy. Here, we develop a multifunctional catalyst composed of Na modified Fe-based catalyst and hollow acidic zeolite H-ZSM-5 to catalyze the hydrogenation of CO2 to aromatics by single pass. Na modified Fe-based catalyst prepared by pyrolysis of Fe-based metal-organic frameworks (Fe-MOFs) can boost the formation of alkenes intermediates because of its high active sites accessibility and precisely tailored catalytic interfaces. Thereafter, the produced alkenes can be converted to aromatics via the dehydrogenation and cyclization reactions when they diffuse to the acid sites of H-ZSM-5. The hollow H-ZSM-5 with short diffusional channels, appropriate density and strength of acid sites guaranteed the high yield of aromatics (203.8 gCH2 kgcat-1 h-1). Furthermore, the driving force in the tandem process can be attributed to the cooperative interplay between the multifunctional catalysts. The CO2 adsorbed on Fe-based catalyst can be employed as acceptors for H species produced from the dehydrogenation and cyclization reactions, thereby increasing the yield of aromatics by shifting the chemical thermodynamic equilibrium.
中文翻译:
通过改进的费-托合成途径将CO 2直接转化为高产率的芳烃
将CO 2直接转化为芳烃不仅可以减少碳排放,而且还为合成增值化学品提供了另一种途径。即使已经通过甲醇介导的途径或改进的费-托合成路线实现了将CO 2加氢成芳族化合物,但是芳族化合物的低产率仍然是该策略的瓶颈。在这里,我们开发了一种由Na改性的铁基催化剂和中空酸性沸石H-ZSM-5组成的多功能催化剂,以催化CO 2的氢化。一次通过芳烃。通过热解铁基金属有机骨架(Fe-MOF)制备的Na改性铁基催化剂,由于其高活性位点可及性和精确定制的催化界面,可以促进烯烃中间体的形成。此后,当所产生的烯烃扩散到H-ZSM-5的酸性位置时,它们可以通过脱氢和环化反应转化为芳烃。空心H-ZSM-5具有短的扩散通道,适当的密度和酸性部位强度可确保芳烃的高产率(203.8 g CH2 kg cat -1 h -1)。此外,串联过程中的驱动力可归因于多功能催化剂之间的协同相互作用。一氧化碳2 吸附在铁基催化剂上的氢可以用作脱氢和环化反应产生的H的受体,从而通过改变化学热力学平衡来提高芳烃的收率。