当前位置:
X-MOL 学术
›
J. Am. Chem. Soc.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Switchable Catalysis Improves the Properties of CO2-Derived Polymers: Poly(cyclohexene carbonate-b-ε-decalactone-b-cyclohexene carbonate) Adhesives, Elastomers, and Toughened Plastics
Journal of the American Chemical Society ( IF 14.4 ) Pub Date : 2020-02-20 , DOI: 10.1021/jacs.9b13106 Gregory S Sulley 1 , Georgina L Gregory 1 , Thomas T D Chen 1 , Leticia Peña Carrodeguas 1 , Gemma Trott 1 , Alba Santmarti 2 , Koon-Yang Lee 2 , Nicholas J Terrill 3 , Charlotte K Williams 1
Journal of the American Chemical Society ( IF 14.4 ) Pub Date : 2020-02-20 , DOI: 10.1021/jacs.9b13106 Gregory S Sulley 1 , Georgina L Gregory 1 , Thomas T D Chen 1 , Leticia Peña Carrodeguas 1 , Gemma Trott 1 , Alba Santmarti 2 , Koon-Yang Lee 2 , Nicholas J Terrill 3 , Charlotte K Williams 1
Affiliation
Carbon dioxide/epoxide copolymerization is an efficient way to add value to waste CO2 and to reduce pollution in polymer manufacturing. Using this process to make low molar mass polycarbonate polyols is a commercially relevant route to new thermosets and polyurethanes. In contrast, high molar mass polycarbonates, produced from CO2, generally under-deliver in terms of properties, and one of the most widely investigated, poly(cyclohexene carbonate), is limited by its low elongation at break and high brittleness. Here, a new catalytic polymerization process is reported that selectively and efficiently yields degradable ABA-block polymers, incorporating 6–23 wt % CO2. The polymers are synthesized using a new, highly active organometallic heterodinuclear Zn(II)/Mg(II) catalyst applied in a one-pot procedure together with biobased ε-decalactone, cyclohexene oxide, and carbon dioxide to make a series of poly(cyclohexene carbonate-b-decalactone-b-cyclohexene carbonate) [PCHC-PDL-PCHC]. The process is highly selective (CO2 selectivity >99% of theoretical value), allows for high monomer conversions (>90%), and yields polymers with predictable compositions, molar mass (from 38–71 kg mol–1), and forms dihydroxyl telechelic chains. These new materials improve upon the properties of poly(cyclohexene carbonate) and, specifically, they show good thermal stability (Td,5 ∼ 280 °C), high toughness (112 MJ m–3), and very high elongation at break (>900%). Materials properties are improved by precisely controlling both the quantity and location of carbon dioxide in the polymer chain. Preliminary studies show that polymers are stable in aqueous environments at room temperature over months, but they are rapidly degraded upon gentle heating in an acidic environment (60 °C, toluene, p-toluene sulfonic acid). The process is likely generally applicable to many other lactones, lactides, anhydrides, epoxides, and heterocumulenes and sets the scene for a host of new applications for CO2-derived polymers.
中文翻译:
可转换催化改善二氧化碳衍生聚合物的性能:聚(环己烯碳酸酯-b-ε-癸内酯-b-环己烯碳酸酯)粘合剂、弹性体和增韧塑料
二氧化碳/环氧化物共聚是增加废弃二氧化碳价值并减少聚合物制造污染的有效方法。使用该工艺生产低摩尔质量聚碳酸酯多元醇是生产新型热固性材料和聚氨酯的商业相关途径。相比之下,由二氧化碳生产的高摩尔质量聚碳酸酯通常在性能方面表现不佳,而研究最广泛的聚(环己烯碳酸酯)之一则受到其低断裂伸长率和高脆性的限制。在此,报道了一种新的催化聚合工艺,该工艺可选择性且有效地产生可降解的 ABA 嵌段聚合物,其中含有 6-23 wt% 的 CO2。该聚合物采用新型高活性有机金属异双核 Zn(II)/Mg(II) 催化剂与生物基 ε-癸内酯、氧化环己烯和二氧化碳一锅法合成,制成一系列聚环己烯碳酸酯-b-癸内酯-b-环己烯碳酸酯)[PCHC-PDL-PCHC]。该工艺具有高度选择性(CO2 选择性 > 理论值的 99%),单体转化率高(>90%),生成具有可预测组成、摩尔质量(从 38–71 kg mol-1)的聚合物,并形成二羟基遥爪链。这些新材料改进了聚(环己烯碳酸酯)的性能,具体而言,它们表现出良好的热稳定性(Td,5 ∼ 280 °C)、高韧性(112 MJ m–3)和非常高的断裂伸长率(> 900%)。通过精确控制聚合物链中二氧化碳的数量和位置来改善材料性能。 初步研究表明,聚合物在室温下的水性环境中可以稳定几个月,但在酸性环境(60°C,甲苯,对甲苯磺酸)中温和加热时会迅速降解。该过程可能普遍适用于许多其他内酯、丙交酯、酸酐、环氧化物和杂积烯,并为二氧化碳衍生聚合物的许多新应用奠定了基础。
更新日期:2020-02-20
中文翻译:
可转换催化改善二氧化碳衍生聚合物的性能:聚(环己烯碳酸酯-b-ε-癸内酯-b-环己烯碳酸酯)粘合剂、弹性体和增韧塑料
二氧化碳/环氧化物共聚是增加废弃二氧化碳价值并减少聚合物制造污染的有效方法。使用该工艺生产低摩尔质量聚碳酸酯多元醇是生产新型热固性材料和聚氨酯的商业相关途径。相比之下,由二氧化碳生产的高摩尔质量聚碳酸酯通常在性能方面表现不佳,而研究最广泛的聚(环己烯碳酸酯)之一则受到其低断裂伸长率和高脆性的限制。在此,报道了一种新的催化聚合工艺,该工艺可选择性且有效地产生可降解的 ABA 嵌段聚合物,其中含有 6-23 wt% 的 CO2。该聚合物采用新型高活性有机金属异双核 Zn(II)/Mg(II) 催化剂与生物基 ε-癸内酯、氧化环己烯和二氧化碳一锅法合成,制成一系列聚环己烯碳酸酯-b-癸内酯-b-环己烯碳酸酯)[PCHC-PDL-PCHC]。该工艺具有高度选择性(CO2 选择性 > 理论值的 99%),单体转化率高(>90%),生成具有可预测组成、摩尔质量(从 38–71 kg mol-1)的聚合物,并形成二羟基遥爪链。这些新材料改进了聚(环己烯碳酸酯)的性能,具体而言,它们表现出良好的热稳定性(Td,5 ∼ 280 °C)、高韧性(112 MJ m–3)和非常高的断裂伸长率(> 900%)。通过精确控制聚合物链中二氧化碳的数量和位置来改善材料性能。 初步研究表明,聚合物在室温下的水性环境中可以稳定几个月,但在酸性环境(60°C,甲苯,对甲苯磺酸)中温和加热时会迅速降解。该过程可能普遍适用于许多其他内酯、丙交酯、酸酐、环氧化物和杂积烯,并为二氧化碳衍生聚合物的许多新应用奠定了基础。