当前位置: X-MOL 学术J. Colloid Interface Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
One-step process for dual-scale ratchets with enhanced mobility of Leidenfrost droplets.
Journal of Colloid and Interface Science ( IF 9.4 ) Pub Date : 2020-02-20 , DOI: 10.1016/j.jcis.2020.02.076
Cong Liu 1 , Kuan Sun 1 , Chenguang Lu 1 , Junpeng Su 1 , Libao Han 1 , Zuankai Wang 2 , Yahua Liu 1
Affiliation  

HYPOTHESIS Droplet depositing onto hot surfaces above the so-called Leidenfrost temperature will float on a cushion of its own vapor. The vapor flow below the drop could be rectified by asymmetric surface textures, resulting the self-propelled droplet motion. Asymmetric structures like ratchets are used to rectify Leidenfrost droplet movement. Hence, it is possible to enhance the droplet mobility using surfaces with combined asymmetric macro/micro-structures. EXPERIMENTS Continuous scale-like microcraters stacked end-to-end were fabricated on steel surfaces by wire electrical discharge machining (WEDM). The crater orientation always vectored towards the machining direction (MD), which oriented the droplet motion. Further, by integrating micro and macro-ratchets, dual-scale ratchets were constructed by one-step process using WEDM. The travelling velocities of Leidenfrost droplets on dual-scale and traditional single-scale ratchets were compared and the enhanced mechanism on dual-scale ratchets was analyzed. FINDINGS One-step process was developed to fabricate transport platforms for Leidenfrost droplets, that continuous scale-like microcraters formed simultaneously on the macroratchets. The highest droplet travelling velocity was achieved compared to previous research. Further study shows that the enhanced drop mobility is attributed to the dual-scale roughness which endows a larger propelling force. This finding presents a high-efficiency method to fabricate transport platforms for Leidenfrost droplets.

中文翻译:

一步式过程的双尺度棘轮,莱顿弗罗斯特液滴的流动性增强。

假设水滴沉积在高于所谓的莱顿弗罗斯特(Leidenfrost)温度的高温表面上,将漂浮在其自身蒸气的垫层上。液滴下方的蒸气流可以通过不对称的表面纹理进行矫正,从而导致液滴自我推进。棘轮等不对称结构用于纠正莱顿弗罗斯特液滴的运动。因此,可以使用具有不对称宏观/微观结构组合的表面来提高液滴的迁移率。实验通过电火花线切割加工(WEDM)在钢表面上端对端地堆积连续的鳞片状微缩孔。弹坑的方向始终朝向加工方向(MD),该方向使液滴运动定向。此外,通过集成微型棘轮棘爪和大型棘轮棘爪,使用WEDM通过一步法构造了双尺度棘轮。比较了莱顿弗罗德液滴在双尺度棘轮和传统单尺度棘轮上的行进速度,并分析了在双尺度棘轮上的增强机理。研究人员开发了一步法来制造莱顿弗罗斯特液滴的运输平台,该过程在大棘齿上同时形成了连续的鳞片状微坑。与以前的研究相比,获得了最高的液滴行进速度。进一步的研究表明,提高的液滴流动性归因于双尺度粗糙度,赋予了更大的推进力。该发现提出了一种用于制造莱顿弗罗斯特液滴的运输平台的高效方法。研究人员开发了一步法来制造莱顿弗罗斯特液滴的运输平台,该过程在大棘齿上同时形成了连续的鳞片状微坑。与以前的研究相比,获得了最高的液滴行进速度。进一步的研究表明,提高的液滴流动性归因于双尺度粗糙度,赋予了更大的推进力。该发现提出了一种用于制造莱顿弗罗斯特液滴的运输平台的高效方法。研究人员开发了一步法来制造莱顿弗罗斯特液滴的运输平台,该过程在大棘齿上同时形成了连续的鳞片状微坑。与以前的研究相比,获得了最高的液滴行进速度。进一步的研究表明,提高的液滴流动性归因于双尺度粗糙度,赋予了更大的推进力。该发现提出了一种用于制造莱顿弗罗斯特液滴的运输平台的高效方法。进一步的研究表明,提高的液滴流动性归因于双尺度粗糙度,赋予了更大的推进力。该发现提出了一种用于制造莱顿弗罗斯特液滴的运输平台的高效方法。进一步的研究表明,提高的液滴流动性归因于双尺度粗糙度,赋予了更大的推进力。该发现提出了一种用于制造莱顿弗罗斯特液滴的运输平台的高效方法。
更新日期:2020-02-20
down
wechat
bug