Electrochimica Acta ( IF 5.5 ) Pub Date : 2020-02-20 , DOI: 10.1016/j.electacta.2020.135929 Amir Mahmoud Makin Adam , Min Deng , Aimei Zhu , Qiugen Zhang , Qinglin Liu
Pd nanocatalysts still suffer from poor activity and rapid stability degradation due to incomplete oxidation reaction of methanol and ethanol. Herein, we report the facile synthesis of bimetallic PdAg supported on multi-walled carbon nanotube (MWCNT) nanocatalysts prepared via one-step room temperature chemical reduction strategy without additional of any capping agents towards the electrooxidation of methanol and ethanol in alkaline medium. During the synthesis process, reduction reaction between PdCl2, AgNO3 and NaBH4 led to bimetallic PdAg/MWCNT electrocatalysts. The results revealed that the PdAg NPs are uniformly-dispersed on the surface of MWCNT with a well-defined structure, small particle size (5.5 nm) and high surface active area (117.49 m2 ). XPS results showed a strong charge transfer interaction between Pd and Ag atoms on catalytic surface. Cyclic voltammetry (CVs) results demonstrate that as-obtained PdAg/MWCNT electrocatalysts exhibit higher electrochemical activity and long-term durability for methanol and ethanol oxidation than the Pd/C (JM) electrocatalysts. Moreover, Pd3·5Ag/MWCNT electrocatalyst exhibit higher electrochemical performance in ethanol (3722) than methanol (1619.52). This method has shown promising effect as advance strategy for the synthesis of low cost and high-performance Pd-based nanocatalysts, and for large-scale application as well.
中文翻译:
在多壁碳纳米管上负载的PdAg纳米催化剂的一步式室温合成易于甲醇和乙醇的电氧化
由于甲醇和乙醇的不完全氧化反应,Pd纳米催化剂的活性仍然很差,稳定性迅速下降。本文中,我们报道了通过一步式室温化学还原策略制备的多壁碳纳米管(MWCNT)纳米催化剂上负载的双金属PdAg的简便合成,而没有额外的封端剂对碱性介质中的甲醇和乙醇进行电氧化。在合成过程中,PdCl 2,AgNO 3和NaBH 4之间的还原反应生成了双金属PdAg / MWCNT电催化剂。结果表明,PdAg纳米颗粒均匀分散在MWCNT表面,具有结构清晰,粒径小(5.5 nm)和高表面活性区(117.49 m)。2 )。XPS结果表明,催化表面上的Pd和Ag原子之间有很强的电荷转移相互作用。循环伏安法(CVs)结果表明,所获得的PdAg / MWCNT电催化剂比Pd / C(JM)电催化剂具有更高的电化学活性以及对甲醇和乙醇氧化的长期耐久性。此外,Pd 3·5 Ag / MWCNT电催化剂在乙醇中表现出更高的电化学性能(3722)比甲醇(1619.52)。该方法作为合成低成本,高性能Pd基纳米催化剂以及大规模应用的先进策略,已显示出令人鼓舞的效果。