当前位置: X-MOL 学术Small › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The Design of 3D-Interface Architecture in an Ultralow-Power, Electrospun Single-Fiber Synaptic Transistor for Neuromorphic Computing.
Small ( IF 13.0 ) Pub Date : 2020-02-18 , DOI: 10.1002/smll.201907472
Dapeng Liu 1 , Qianqian Shi 1, 2 , Shilei Dai 1 , Jia Huang 1, 2, 3
Affiliation  

Synaptic electronics is a new technology for developing functional electronic devices that can mimic the structure and functions of biological counterparts. It has broad application prospects in wearable computing chips, human-machine interfaces, and neuron prostheses. These types of applications require synaptic devices with ultralow energy consumption as the effective energy supply for wearable electronics, which is still very difficult. Here, artificial synapse emulation is demonstrated by solid-ion gated organic field-effect transistors (OFETs) with a 3D-interface conducting channel for ultralow-power synaptic simulation. The basic features of the artificial synapse, excitatory postsynaptic current (EPSC), paired-pulse facilitation (PPF), and high-pass filtering, are successfully realized. Furthermore, the single-fiber based artificial synapse can be operated by an ultralow presynaptic spike down to -0.5 mV with an ultralow reading voltage at -0.1 mV due to the large contact surface between the ionic electrolyte and fiber-like semiconducting channel. Therefore, the ultralow energy consumption at one spike of the artificial synapse can be realized as low as ≈3.9 fJ, which provides great potential in a low-power integrated synaptic circuit.

中文翻译:

用于神经形态计算的超低功耗电纺单纤维突触晶体管中的3D接口体系结构设计。

突触电子学是用于开发可以模仿生物对应物的结构和功能的功能性电子设备的新技术。它在可穿戴计算芯片,人机界面和神经元假体中具有广阔的应用前景。这些类型的应用需要具有超低能耗的突触设备作为可穿戴电子设备的有效能量供应,这仍然非常困难。在这里,通过具有3D接口传导通道的固体离子门控有机场效应晶体管(OFET)进行了人工突触仿真,以进行超低功率突触仿真。成功地实现了人工突触,兴奋性突触后电流(EPSC),成对脉冲促进(PPF)和高通滤波的基本功能。此外,由于离子电解质和纤维状半导体通道之间的接触面较大,因此可以通过低至-0.5 mV的超低突触前突峰和-0.1 mV的超低读取电压来操作基于单纤维的人工突触。因此,人造突触的一个峰值处的超低能耗可以实现低至≈3.9fJ,这在低功率集成突触电路中提供了巨大的潜力。
更新日期:2020-04-03
down
wechat
bug