当前位置:
X-MOL 学术
›
ACS Sustain. Chem. Eng.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Potential Use of Earthworms to Enhance Decaying of Biodegradable Plastics
ACS Sustainable Chemistry & Engineering ( IF 7.1 ) Pub Date : 2020-02-26 , DOI: 10.1021/acssuschemeng.9b05450 Juan C. Sanchez-Hernandez 1 , Yvan Capowiez 2 , Kyoung S. Ro 3
ACS Sustainable Chemistry & Engineering ( IF 7.1 ) Pub Date : 2020-02-26 , DOI: 10.1021/acssuschemeng.9b05450 Juan C. Sanchez-Hernandez 1 , Yvan Capowiez 2 , Kyoung S. Ro 3
Affiliation
Biosolid application, wastewater irrigation, and plastic mulching technologies are major sources of plastic pollution in agroecosystems. Microplastics may interact with soil physicochemical properties and organisms and negatively affect plant growth. To alleviate environmental plastic pollution, synthetic and biobased biodegradable polymers are replacing nonbiodegradable polymers, but their biodegradation rate in the field is frequently lower than that estimated from standardized biodegradation testing. Plastic polymer biodegradation is a multistep process that involves plastic deterioration, microbial colonization, production of polymer-degrading exoenzymes, and mineralization. However, these physicochemical and biological processes are not always efficient because of unfavorable environmental conditions (e.g., temperature, soil moisture). We propose to use earthworms to increase the biodegradable polymer biodegradation rate by creating optimal habitats for microbial proliferation. Earthworm-induced processes that lead to soil alteration (bioturbation) and solid organic wastes decomposition (vermicomposting) are described to understand how earthworms may favor biodegradable plastic mineralization. Therefore, we suggest two practical sustainable bioengineering strategies: (1) enhancing bioturbation by inoculating agricultural soils with soil-dwelling earthworms, which is viable for horticulture where using biodegradable mulching films increases plastic debris in the soil and (2) vermicomposting with blended biodegradable plastic debris and solid organic wastes, which is complementary to industrial or home composting of single-use biodegradable plastics.
中文翻译:
潜在使用to来增强可降解塑料的腐烂
生物固体应用,废水灌溉和塑料覆盖技术是农业生态系统中塑料污染的主要来源。微塑料可能与土壤的理化特性和生物相互作用,并对植物的生长产生负面影响。为了减轻环境塑料污染,合成和生物基可生物降解的聚合物正在替代不可生物降解的聚合物,但其在现场的生物降解率通常低于标准生物降解测试的估计值。塑料聚合物的生物降解是一个多步骤的过程,涉及塑料降解,微生物定植,产生聚合物降解性外酶和矿化的过程。但是,由于不利的环境条件(例如温度,土壤湿度),这些物理化学和生物过程并不总是有效的。我们建议使用earth通过为微生物繁殖创造最佳栖息地来提高可生物降解的聚合物的生物降解率。描述了worm诱导的过程,这些过程导致土壤改变(生物扰动)和固体有机废物分解(ver堆肥),以了解earth可能如何促进可生物降解的塑料矿化。因此,我们提出了两种可行的可持续生物工程实践策略:(1)通过在土壤中接种worm来增强农业扰动,这对于园艺是可行的,在园艺中,使用可生物降解的覆盖膜会增加土壤中的塑料碎片;(2)与可生物降解的混合塑料进行堆肥碎片和固体有机废物,是对一次性生物降解塑料的工业或家庭堆肥的补充。
更新日期:2020-02-27
中文翻译:
潜在使用to来增强可降解塑料的腐烂
生物固体应用,废水灌溉和塑料覆盖技术是农业生态系统中塑料污染的主要来源。微塑料可能与土壤的理化特性和生物相互作用,并对植物的生长产生负面影响。为了减轻环境塑料污染,合成和生物基可生物降解的聚合物正在替代不可生物降解的聚合物,但其在现场的生物降解率通常低于标准生物降解测试的估计值。塑料聚合物的生物降解是一个多步骤的过程,涉及塑料降解,微生物定植,产生聚合物降解性外酶和矿化的过程。但是,由于不利的环境条件(例如温度,土壤湿度),这些物理化学和生物过程并不总是有效的。我们建议使用earth通过为微生物繁殖创造最佳栖息地来提高可生物降解的聚合物的生物降解率。描述了worm诱导的过程,这些过程导致土壤改变(生物扰动)和固体有机废物分解(ver堆肥),以了解earth可能如何促进可生物降解的塑料矿化。因此,我们提出了两种可行的可持续生物工程实践策略:(1)通过在土壤中接种worm来增强农业扰动,这对于园艺是可行的,在园艺中,使用可生物降解的覆盖膜会增加土壤中的塑料碎片;(2)与可生物降解的混合塑料进行堆肥碎片和固体有机废物,是对一次性生物降解塑料的工业或家庭堆肥的补充。