当前位置:
X-MOL 学术
›
ACS Sustain. Chem. Eng.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Silanization Mechanism of Silica Nanoparticles in Bitumen Using 3-Aminopropyl Triethoxysilane (APTES) and 3-Glycidyloxypropyl Trimethoxysilane (GPTMS)
ACS Sustainable Chemistry & Engineering ( IF 7.1 ) Pub Date : 2020-02-20 , DOI: 10.1021/acssuschemeng.9b06741 Masoumeh Mousavi 1 , Elham Fini 1
ACS Sustainable Chemistry & Engineering ( IF 7.1 ) Pub Date : 2020-02-20 , DOI: 10.1021/acssuschemeng.9b06741 Masoumeh Mousavi 1 , Elham Fini 1
Affiliation
The surface functionalization of silica nanoparticles (SiNPs) to enhance their compatibility and miscibility in the organic medium of bitumen has been performed using various coupling agents. 3-Aminopropyl triethoxysilane (APTES) and 3-glycidyloxypropyl trimethoxysilane (GPTMS) are among the effective silanization coupling agents; their successful performance is attributed to the unique properties imparted by their bifunctional characteristics. Here we study the interaction mechanisms controlling the silanization process that lead to the distinct performances of APTES and GPTMS in a bitumen matrix. On the basis of density functional theory results, the protonated amines (−NH3+) of APTES show a considerable interaction energy with Si surface silanols (−55.2 kcal/mol). The strong binding of APTES’ amine head to the silica surface makes the silanols of APTES available for covalent condensation with surface silanols of the neighboring SiNPs or for self-condensation with free unreacted APTES molecules, promoting the agglomeration of the particles in a high loading of APTES. Compared with APTES, the lower aggregation in GPTMS-treated SiNPs can be attributed to the lower adsorption tendency of GPTMS’ epoxy head to the available silanols, in particular, when the epoxy rings are not opened under the experimental conditions. The lower agglomeration in GPTMS-treated SiNPs leads to their smaller particle size. This was also evidenced in the larger surface area of GPTMS-treated SiNPs compared with APTES-treated SiNPs, as measured by inverse gas chromatography. It was further shown that the dual functionality of silane coupling agents allows them to bridge SiNPs to bitumen components. In the GPTMS case, nucleophilic centers of the asphaltene or resin molecules, such as −OH or −NH, attack the electrophilic carbons of epoxide at the position least hindered to create chemical bonds between the two species. In the APTES case, protonated amines can form ion-pair compounds through interactions with basic sites of bitumen, such as quinoline or pyridine resins. The lower agglomeration of the GPTM-treated SiNPs further manifested itself in a higher complex modulus for bitumen specimens containing APTES-treated SiNPs (4800 kPa) compared with bitumen containing GPTM-treated SiNPs (4.8 kPa) when measured at 1 rad/s and 40 °C.
中文翻译:
使用3-氨丙基三乙氧基硅烷(APTES)和3-缩水甘油基氧基丙基三甲氧基硅烷(GPTMS)的二氧化硅纳米粒子在沥青中的硅烷化机理
已经使用各种偶联剂对二氧化硅纳米粒子(SiNP)进行表面官能化以增强其在沥青有机介质中的相容性和可混溶性。3-氨基丙基三乙氧基硅烷(APTES)和3-环氧丙氧基丙基三甲氧基硅烷(GPTMS)是有效的硅烷化偶联剂。它们的成功性能归因于其双功能特性赋予的独特性能。在这里,我们研究了控制硅烷化过程的相互作用机理,这些相互作用机理导致了APTES和GPTMS在沥青基质中的独特性能。根据密度泛函理论结果,质子化胺(-NH 3 +APTES)显示出与Si表面硅烷醇的相当大的相互作用能(-55.2 kcal / mol)。APTES胺头与二氧化硅表面的牢固结合使APTES的硅烷醇可用于与相邻SiNPs的表面硅烷醇共价缩合,或与游离的未反应APTES分子自缩合,从而在高负载下促进颗粒的团聚APTES。与APTES相比,GPTMS处理的SiNPs中较低的聚集度可归因于GPTMS的环氧头对可用硅烷醇的较低吸附趋势,特别是当在实验条件下未打开环氧环时。GPTMS处理的SiNP中较低的团聚导致其较小的粒径。与APTES处理的SiNP相比,GPTMS处理的SiNP的表面积更大,这也得到了证明,通过反相气相色谱法测量。进一步表明,硅烷偶联剂的双重功能使它们能够桥接SiNP与沥青组分。在GPTMS情况下,沥青质或树脂分子的亲核中心(例如-OH或-NH)会在最不妨碍在这两个物种之间建立化学键的位置上攻击环氧化物的亲电子碳。在APTES情况下,质子化的胺可通过与沥青的碱性位点(例如喹啉或吡啶树脂)相互作用而形成离子对化合物。当在1 rad / s和40 rad下测量时,与包含GPTES处理过的SiNPs(4.8 kPa)的沥青样品相比,GPTM处理过的SiNPs的较低结块进一步表现为包含APTES处理过的SiNPs(4800 kPa)的沥青样品的较高的复数模量。 ℃。进一步表明,硅烷偶联剂的双重功能使它们能够桥接SiNP与沥青组分。在GPTMS情况下,沥青质或树脂分子的亲核中心(例如-OH或-NH)会在最不妨碍在这两个物种之间建立化学键的位置上攻击环氧化物的亲电子碳。在APTES情况下,质子化的胺可通过与沥青的碱性位点(例如喹啉或吡啶树脂)相互作用而形成离子对化合物。当在1 rad / s和40 rad下测量时,与包含GPTES处理过的SiNPs(4.8 kPa)的沥青样品相比,GPTM处理过的SiNPs的较低结块进一步表现为包含APTES处理过的SiNPs(4800 kPa)的沥青样品的较高的复数模量。 ℃。进一步表明,硅烷偶联剂的双重功能使它们能够桥接SiNP与沥青组分。在GPTMS情况下,沥青质或树脂分子的亲核中心(例如-OH或-NH)会在最不妨碍在这两个物种之间建立化学键的位置上攻击环氧化物的亲电子碳。在APTES情况下,质子化的胺可通过与沥青的碱性位点(例如喹啉或吡啶树脂)相互作用而形成离子对化合物。当在1 rad / s和40 rad下测量时,与包含GPTES处理过的SiNPs(4.8 kPa)的沥青样品相比,GPTM处理过的SiNPs的较低结块进一步表现为包含APTES处理过的SiNPs(4800 kPa)的沥青样品的较高的复数模量。 ℃。
更新日期:2020-02-21
中文翻译:
使用3-氨丙基三乙氧基硅烷(APTES)和3-缩水甘油基氧基丙基三甲氧基硅烷(GPTMS)的二氧化硅纳米粒子在沥青中的硅烷化机理
已经使用各种偶联剂对二氧化硅纳米粒子(SiNP)进行表面官能化以增强其在沥青有机介质中的相容性和可混溶性。3-氨基丙基三乙氧基硅烷(APTES)和3-环氧丙氧基丙基三甲氧基硅烷(GPTMS)是有效的硅烷化偶联剂。它们的成功性能归因于其双功能特性赋予的独特性能。在这里,我们研究了控制硅烷化过程的相互作用机理,这些相互作用机理导致了APTES和GPTMS在沥青基质中的独特性能。根据密度泛函理论结果,质子化胺(-NH 3 +APTES)显示出与Si表面硅烷醇的相当大的相互作用能(-55.2 kcal / mol)。APTES胺头与二氧化硅表面的牢固结合使APTES的硅烷醇可用于与相邻SiNPs的表面硅烷醇共价缩合,或与游离的未反应APTES分子自缩合,从而在高负载下促进颗粒的团聚APTES。与APTES相比,GPTMS处理的SiNPs中较低的聚集度可归因于GPTMS的环氧头对可用硅烷醇的较低吸附趋势,特别是当在实验条件下未打开环氧环时。GPTMS处理的SiNP中较低的团聚导致其较小的粒径。与APTES处理的SiNP相比,GPTMS处理的SiNP的表面积更大,这也得到了证明,通过反相气相色谱法测量。进一步表明,硅烷偶联剂的双重功能使它们能够桥接SiNP与沥青组分。在GPTMS情况下,沥青质或树脂分子的亲核中心(例如-OH或-NH)会在最不妨碍在这两个物种之间建立化学键的位置上攻击环氧化物的亲电子碳。在APTES情况下,质子化的胺可通过与沥青的碱性位点(例如喹啉或吡啶树脂)相互作用而形成离子对化合物。当在1 rad / s和40 rad下测量时,与包含GPTES处理过的SiNPs(4.8 kPa)的沥青样品相比,GPTM处理过的SiNPs的较低结块进一步表现为包含APTES处理过的SiNPs(4800 kPa)的沥青样品的较高的复数模量。 ℃。进一步表明,硅烷偶联剂的双重功能使它们能够桥接SiNP与沥青组分。在GPTMS情况下,沥青质或树脂分子的亲核中心(例如-OH或-NH)会在最不妨碍在这两个物种之间建立化学键的位置上攻击环氧化物的亲电子碳。在APTES情况下,质子化的胺可通过与沥青的碱性位点(例如喹啉或吡啶树脂)相互作用而形成离子对化合物。当在1 rad / s和40 rad下测量时,与包含GPTES处理过的SiNPs(4.8 kPa)的沥青样品相比,GPTM处理过的SiNPs的较低结块进一步表现为包含APTES处理过的SiNPs(4800 kPa)的沥青样品的较高的复数模量。 ℃。进一步表明,硅烷偶联剂的双重功能使它们能够桥接SiNP与沥青组分。在GPTMS情况下,沥青质或树脂分子的亲核中心(例如-OH或-NH)会在最不妨碍在这两个物种之间建立化学键的位置上攻击环氧化物的亲电子碳。在APTES情况下,质子化的胺可通过与沥青的碱性位点(例如喹啉或吡啶树脂)相互作用而形成离子对化合物。当在1 rad / s和40 rad下测量时,与包含GPTES处理过的SiNPs(4.8 kPa)的沥青样品相比,GPTM处理过的SiNPs的较低结块进一步表现为包含APTES处理过的SiNPs(4800 kPa)的沥青样品的较高的复数模量。 ℃。