当前位置: X-MOL 学术ACS Appl. Energy Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Optimizing Ammonia Separation via Reactive Absorption for Sustainable Ammonia Synthesis
ACS Applied Energy Materials ( IF 5.4 ) Pub Date : 2020-02-07 00:00:00 , DOI: 10.1021/acsaem.9b02278
Matthew J. Kale 1 , Deepak K. Ojha 1 , Sayandeep Biswas 1 , Joshua I. Militti 1 , Alon V. McCormick 1 , Jeffrey H. Schott 1 , Paul J. Dauenhauer 1 , E. L. Cussler 1
Affiliation  

Metal halide salts such as magnesium chloride have been demonstrated to be promising candidates for ammonia storage materials for energy storage and agriculture applications due to their ability to incorporate several moles of ammonia per mole of salt. Ammonia exiting a synthesis reactor can be separated from nitrogen and hydrogen by absorption into magnesium chloride. Such an absorption can be more complete and hotter than separation via ammonia condensation, the current standard in the Haber–Bosch process. Here, we discuss the optimal conditions for the cyclic uptake and release of ammonia from the supported magnesium chloride absorbents. An automated system was designed for measuring the nonequilibrium working capacity of the absorbent, as well as the impact of important operating conditions such as absorption and desorption temperature, pressure, and desorption time. Measurements of absorption and desorption kinetics provide insight into the mechanisms involved. The temperatures and pressures during absorption and desorption were designed to use minimal energy input to maximize the uptake and release of ammonia within a reasonable amount of time. In a laboratory-scale bed, absorption has a small unused bed length, so it is largely independent of mass transfer; it is dominated by how fast ammonia is fed to the bed. On the other hand, desorption is restricted both by the speed of heating the bed and by diffusion out of the absorbent. These measurements provide guidelines for ammonia separations and cycling sorbent materials on a larger scale.

中文翻译:

通过反应吸收优化氨分离以实现可持续的氨合成

金属卤化物盐(例如氯化镁)已被证明是用于能量存储和农业应用的氨存储材料的有前途的候选者,因为它们每摩尔盐中掺入几摩尔氨的能力。离开合成反应器的氨可以通过吸收到氯化镁中而与氮和氢分离。这种吸收比Haber–Bosch工艺中的现行标准氨缩合分离更完全,更热。在这里,我们讨论了从负载的氯化镁吸收剂中循环吸收和释放氨的最佳条件。设计了一个自动化系统,用于测量吸收剂的非平衡工作能力以及重要操作条件(例如吸收和解吸温度)的影响,压力和解吸时间。吸收和解吸动力学的测量提供了有关机制的见解。设计吸收和解吸过程中的温度和压力以使用最少的能量输入,以在合理的时间内使氨的吸收和释放最大化。在实验室规模的床中,吸收的未使用床长度很小,因此在很大程度上与传质无关。它主要取决于将氨气进料到床的速度。另一方面,解吸受加热床的速度和从吸收剂中扩散出来的限制。这些测量为大规模氨气分离和循环吸附剂材料提供了指导。设计吸收和解吸过程中的温度和压力以使用最少的能量输入,以在合理的时间内使氨的吸收和释放最大化。在实验室规模的床中,吸收的未使用床长度很小,因此在很大程度上与传质无关。它主要取决于将氨气进料到床的速度。另一方面,解吸受加热床的速度和从吸收剂中扩散出来的限制。这些测量为氨分离和大规模循环吸附材料提供了指导。设计吸收和解吸过程中的温度和压力以使用最少的能量输入,以在合理的时间内使氨的吸收和释放最大化。在实验室规模的床中,吸收的未使用床长度很小,因此在很大程度上与传质无关。它主要取决于将氨气进料到床的速度。另一方面,解吸受加热床的速度和从吸收剂中扩散出来的限制。这些测量为大规模氨气分离和循环吸附剂材料提供了指导。因此它在很大程度上与传质无关。它主要取决于将氨气进料到床的速度。另一方面,解吸受加热床的速度和从吸收剂中扩散出来的限制。这些测量为大规模氨气分离和循环吸附剂材料提供了指导。因此它在很大程度上与传质无关。它主要取决于将氨气进料到床的速度。另一方面,解吸受加热床的速度和从吸收剂中扩散出来的限制。这些测量为氨分离和大规模循环吸附材料提供了指导。
更新日期:2020-02-07
down
wechat
bug