当前位置:
X-MOL 学术
›
ACS Appl. Mater. Interfaces
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Experimental Investigation and First-Principles Calculations of a Ni3Se4 Cathode Material for Mg-Ion Batteries.
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2020-02-07 , DOI: 10.1021/acsami.9b21540
Luyao Wei 1 , Ruqian Lian 1 , Yingying Zhao 2 , Yuan Meng 3 , Li He 1 , Yue Yu 1 , Gang Chen 1 , Yingjin Wei 1
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2020-02-07 , DOI: 10.1021/acsami.9b21540
Luyao Wei 1 , Ruqian Lian 1 , Yingying Zhao 2 , Yuan Meng 3 , Li He 1 , Yue Yu 1 , Gang Chen 1 , Yingjin Wei 1
Affiliation
![]() |
Magnesium ion batteries (MIBs) have attracted increasing attention due to their advantages of abundant reserves, low price, and high volumetric capacity. However, the large Coulombic interactions of Mg2+ with the cathode framework seriously hinder the rate capability and cycle stability of the battery cell. For this reason, finding a suitable cathode material has become a main task in MIB research. In this study, Ni3Se4 was first proposed as a new cathode material for MIBs. First-principles calculations showed that Ni3Se4 could accommodate up to 1 mol of Mg2+, but the migration energy barrier was as high as 1.35 eV. Accordingly, nanosized Ni3Se4 was prepared by a hydrothermal method to achieve satisfying electrochemical performance. The prepared Ni3Se4 material showed a discharge capacity of 99.8 mA·h·g-1 at 50 mA·g-1 current density with a capacity retention of 75% after 100 cycles. Combined with first-principles calculations and spectroscopic studies, it was demonstrated that the material underwent a solid-solution structural change during Mg2+ insertion, with all charge transfer taking place on the Ni cations.
中文翻译:
用于镁离子电池的Ni3Se4正极材料的实验研究和第一性原理计算。
镁离子电池(MIB)具有储量丰富,价格低廉和容量大的优点,因此受到越来越多的关注。但是,Mg2 +与阴极骨架之间的大库伦相互作用严重阻碍了电池单元的倍率能力和循环稳定性。因此,寻找合适的阴极材料已成为MIB研究的主要任务。在这项研究中,首先提出了Ni3Se4作为MIB的新型阴极材料。第一性原理计算表明,Ni3Se4最多可容纳1 mol Mg2 +,但迁移能垒高达1.35 eV。因此,通过水热法制备了纳米尺寸的Ni 3 Se 4以实现令人满意的电化学性能。制备的Ni3Se4材料的放电容量为99。电流密度为50 mA·g-1时为8 mA·h·g-1,经过100次循环后容量保持率为75%。结合第一性原理计算和光谱学研究,表明该材料在Mg2 +插入过程中发生了固溶体结构变化,所有电荷转移均发生在Ni阳离子上。
更新日期:2020-02-17
中文翻译:

用于镁离子电池的Ni3Se4正极材料的实验研究和第一性原理计算。
镁离子电池(MIB)具有储量丰富,价格低廉和容量大的优点,因此受到越来越多的关注。但是,Mg2 +与阴极骨架之间的大库伦相互作用严重阻碍了电池单元的倍率能力和循环稳定性。因此,寻找合适的阴极材料已成为MIB研究的主要任务。在这项研究中,首先提出了Ni3Se4作为MIB的新型阴极材料。第一性原理计算表明,Ni3Se4最多可容纳1 mol Mg2 +,但迁移能垒高达1.35 eV。因此,通过水热法制备了纳米尺寸的Ni 3 Se 4以实现令人满意的电化学性能。制备的Ni3Se4材料的放电容量为99。电流密度为50 mA·g-1时为8 mA·h·g-1,经过100次循环后容量保持率为75%。结合第一性原理计算和光谱学研究,表明该材料在Mg2 +插入过程中发生了固溶体结构变化,所有电荷转移均发生在Ni阳离子上。