Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Identification of a parasitic symbiosis between respiratory metabolisms in the biogeochemical chlorine cycle.
The ISME Journal ( IF 10.8 ) Pub Date : 2020-02-05 , DOI: 10.1038/s41396-020-0599-1 Tyler P Barnum 1 , Yiwei Cheng 2 , Kaisle A Hill 1 , Lauren N Lucas 1 , Hans K Carlson 3 , John D Coates 1
The ISME Journal ( IF 10.8 ) Pub Date : 2020-02-05 , DOI: 10.1038/s41396-020-0599-1 Tyler P Barnum 1 , Yiwei Cheng 2 , Kaisle A Hill 1 , Lauren N Lucas 1 , Hans K Carlson 3 , John D Coates 1
Affiliation
A key step in the chlorine cycle is the reduction of perchlorate (ClO4-) and chlorate (ClO3-) to chloride by microbial respiratory pathways. Perchlorate-reducing bacteria and chlorate-reducing bacteria differ in that the latter cannot use perchlorate, the most oxidized chlorine compound. However, a recent study identified a bacterium with the chlorate reduction pathway dominating a community provided only perchlorate. Here we confirm a metabolic interaction between perchlorate- and chlorate-reducing bacteria and define its mechanism. Perchlorate-reducing bacteria supported the growth of chlorate-reducing bacteria to up to 90% of total cells in communities and co-cultures. Chlorate-reducing bacteria required the gene for chlorate reductase to grow in co-culture with perchlorate-reducing bacteria, demonstrating that chlorate is responsible for the interaction, not the subsequent intermediates chlorite and oxygen. Modeling of the interaction suggested that cells specialized for chlorate reduction have a competitive advantage for consuming chlorate produced from perchlorate, especially at high concentrations of perchlorate, because perchlorate and chlorate compete for a single enzyme in perchlorate-reducing cells. We conclude that perchlorate-reducing bacteria inadvertently support large populations of chlorate-reducing bacteria in a parasitic relationship through the release of the intermediate chlorate. An implication of these findings is that undetected chlorate-reducing bacteria have likely negatively impacted efforts to bioremediate perchlorate pollution for decades.
中文翻译:
生物地球化学氯循环中呼吸代谢之间寄生共生的鉴定。
氯循环的关键步骤是通过微生物呼吸途径将高氯酸盐 (ClO4-) 和氯酸盐 (ClO3-) 还原为氯化物。高氯酸盐还原菌和氯酸盐还原菌的不同之处在于后者不能利用高氯酸盐,即氧化程度最高的氯化合物。然而,最近的一项研究发现,一种具有氯酸盐还原途径的细菌在仅提供高氯酸盐的群落中占主导地位。在这里,我们确认了高氯酸盐和氯酸盐还原菌之间的代谢相互作用,并确定了其机制。高氯酸盐还原菌支持群落和共培养物中高达 90% 的氯酸盐还原菌生长。氯酸盐还原菌需要氯酸盐还原酶基因才能与高氯酸盐还原菌共培养,这表明氯酸盐负责相互作用,而不是随后的中间产物亚氯酸盐和氧。相互作用的模型表明,专门用于氯酸盐还原的细胞在消耗高氯酸盐产生的氯酸盐方面具有竞争优势,尤其是在高氯酸盐浓度较高的情况下,因为高氯酸盐和氯酸盐在高氯酸盐还原细胞中竞争单一酶。我们得出的结论是,高氯酸盐还原菌通过释放中间氯酸盐无意中以寄生关系支持大量氯酸盐还原菌。这些发现的含义是,数十年来未被检测到的氯酸盐还原细菌可能对生物修复高氯酸盐污染的努力产生了负面影响。
更新日期:2020-02-06
中文翻译:
生物地球化学氯循环中呼吸代谢之间寄生共生的鉴定。
氯循环的关键步骤是通过微生物呼吸途径将高氯酸盐 (ClO4-) 和氯酸盐 (ClO3-) 还原为氯化物。高氯酸盐还原菌和氯酸盐还原菌的不同之处在于后者不能利用高氯酸盐,即氧化程度最高的氯化合物。然而,最近的一项研究发现,一种具有氯酸盐还原途径的细菌在仅提供高氯酸盐的群落中占主导地位。在这里,我们确认了高氯酸盐和氯酸盐还原菌之间的代谢相互作用,并确定了其机制。高氯酸盐还原菌支持群落和共培养物中高达 90% 的氯酸盐还原菌生长。氯酸盐还原菌需要氯酸盐还原酶基因才能与高氯酸盐还原菌共培养,这表明氯酸盐负责相互作用,而不是随后的中间产物亚氯酸盐和氧。相互作用的模型表明,专门用于氯酸盐还原的细胞在消耗高氯酸盐产生的氯酸盐方面具有竞争优势,尤其是在高氯酸盐浓度较高的情况下,因为高氯酸盐和氯酸盐在高氯酸盐还原细胞中竞争单一酶。我们得出的结论是,高氯酸盐还原菌通过释放中间氯酸盐无意中以寄生关系支持大量氯酸盐还原菌。这些发现的含义是,数十年来未被检测到的氯酸盐还原细菌可能对生物修复高氯酸盐污染的努力产生了负面影响。