当前位置: X-MOL 学术Inorg. Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Spin-Lattice Coupling Across the Magnetic Quantum-Phase Transition in Copper-Containing Coordination Polymers.
Inorganic Chemistry ( IF 4.3 ) Pub Date : 2020-02-03 , DOI: 10.1021/acs.inorgchem.9b02394
Kendall D Hughey 1 , Nathan C Harms 1 , Kenneth R O'Neal 1 , Amanda J Clune 1 , Jeffrey C Monroe 2 , Avery L Blockmon 1 , Christopher P Landee 3 , Zhenxian Liu 4 , Mykhaylo Ozerov 5 , Janice L Musfeldt 1, 6
Affiliation  

We measured the infrared vibrational properties of two copper-containing coordination polymers, [Cu(pyz)2(2-HOpy)2](PF6)2 and [Cu(pyz)1.5(4-HOpy)2](ClO4)2, under different external stimuli in order to explore the microscopic aspects of spin-lattice coupling. While the temperature and pressure control hydrogen bonding, an applied field drives these materials from the antiferromagnetic → fully saturated state. Analysis of the pyrazine (pyz)-related vibrational modes across the magnetic quantum-phase transition provides a superb local probe of magnetoelastic coupling because the pyz ligand functions as the primary exchange pathway and is present in both systems. Strikingly, the PF6- compound employs several pyz-related distortions in support of the magnetically driven transition, whereas the ClO4- system requires only a single out-of-plane pyz bending mode. Bringing these findings together with magnetoinfrared spectra from other copper complexes reveals spin-lattice coupling across the magnetic quantum-phase transition as a function of the structural and magnetic dimensionality. Coupling is maximized in [Cu(pyz)1.5(4-HOpy)2](ClO4)2 because of its ladderlike character. Although spin-lattice interactions can also be explored under compression, differences in the local structure and dimensionality drive these materials to unique high-pressure phases. Symmetry analysis suggests that the high-pressure phase of the ClO4- compound may be ferroelectric.

中文翻译:

含铜配位聚合物中跨磁性量子相变的自旋-晶格耦合。

我们测量了两种含铜的配位聚合物[Cu(pyz)2(2-HOpy)2](PF6)2和[Cu(pyz)1.5(4-HOpy)2](ClO4)2的红外振动特性,在不同的外部刺激下,以探索自旋-晶格耦合的微观方面。在温度和压力控制氢键的同时,施加的磁场将这些材料从反铁磁→完全饱和状态驱使。吡嗪(pyz)相关的振动模态在整个磁性量子相变过程中的分析为磁弹耦合提供了极好的局部探针,因为pyz配体充当了主要的交换途径,并存在于两个系统中。令人惊讶的是,PF6-化合物利用与pyz相关的几种畸变来支持磁性驱动的跃迁,而ClO4-系统只需要一个平面外pyz弯曲模式。将这些发现与其他铜络合物的磁红外光谱结合起来,揭示了跨越磁性量子相变的自旋-晶格耦合随结构和磁性尺寸的变化。由于[Cu(pyz)1.5(4-HOpy)2](ClO4)2中的梯形特征,其耦合作用最大。尽管也可以在压缩条件下探索自旋-晶格相互作用,但局部结构和尺寸的差异驱使这些材料进入独特的高压相。对称性分析表明,ClO4-化合物的高压相可能是铁电的。将这些发现与其他铜络合物的磁红外光谱结合起来,揭示了跨越磁性量子相变的自旋-晶格耦合随结构和磁性尺寸的变化。由于[Cu(pyz)1.5(4-HOpy)2](ClO4)2中的梯形特征,其耦合作用最大。尽管也可以在压缩条件下探索自旋-晶格相互作用,但局部结构和尺寸的差异驱使这些材料进入独特的高压相。对称性分析表明,ClO4-化合物的高压相可能是铁电的。将这些发现与其他铜络合物的磁红外光谱结合起来,揭示了跨越磁性量子相变的自旋-晶格耦合随结构和磁性尺寸的变化。由于[Cu(pyz)1.5(4-HOpy)2](ClO4)2中的梯形特征,其耦合作用最大。尽管也可以在压缩条件下探索自旋-晶格相互作用,但局部结构和尺寸的差异驱使这些材料进入独特的高压相。对称性分析表明,ClO4-化合物的高压相可能是铁电的。局部结构和尺寸的差异驱使这些材料进入独特的高压相。对称性分析表明,ClO4-化合物的高压相可能是铁电的。局部结构和尺寸的差异驱使这些材料进入独特的高压相。对称性分析表明,ClO4-化合物的高压相可能是铁电的。
更新日期:2020-02-03
down
wechat
bug