当前位置:
X-MOL 学术
›
ACS Appl. Electron. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Fabrication and Interfacial Electronic Structure of Wide Bandgap NiO and Ga2O3 p–n Heterojunction
ACS Applied Electronic Materials ( IF 4.3 ) Pub Date : 2020-02-12 , DOI: 10.1021/acsaelm.9b00704 Jiaye Zhang 1, 2 , Shaobo Han 3 , Meiyan Cui 1 , Xiangyu Xu 1 , Weiwei Li 4 , Haiwan Xu 1 , Cai Jin 2 , Meng Gu 3 , Lang Chen 2 , Kelvin H. L. Zhang 1
ACS Applied Electronic Materials ( IF 4.3 ) Pub Date : 2020-02-12 , DOI: 10.1021/acsaelm.9b00704 Jiaye Zhang 1, 2 , Shaobo Han 3 , Meiyan Cui 1 , Xiangyu Xu 1 , Weiwei Li 4 , Haiwan Xu 1 , Cai Jin 2 , Meng Gu 3 , Lang Chen 2 , Kelvin H. L. Zhang 1
Affiliation
Ga2O3 is emerging as an interesting semiconductor for high-power electronics and solar-blind ultraviolet photodetectors because of its ultrawide bandgap and high breakdown field. To fully extend its applications in optoelectronics, it is highly desirable to fabricate a p–n heterojunction. In this work, we report detailed investigations on the epitaxial growth and interface properties of a p–n heterojunction consisting of wide bandgap NiO and β-phase Ga2O3. We show that the NiO(111) layer can be grown on β-Ga2O3(201) thin films, with an epitaxial relationship of NiO(111)||β-Ga2O3(201) and NiO{110}||β-Ga2O3(132). The p–n diode exhibits a large current rectification ratio of about 6 orders of magnitude at ±2.0 V. A detailed X-ray photoemission spectroscopy study reveals a “staggered” band alignment with valence band offsets of 2.1 eV. More interestingly, a large upward built-in potential of 1.1 eV for β-Ga2O3 is observed near the interface region. The valence band offset and large built-in potential formed at the heterointerface provide advantageous energetics for the separation and migration of photogenerated excitons, of particular interest for self-powered solar-blind ultraviolet photodetection.
中文翻译:
宽带隙NiO和Ga 2 O 3 p–n异质结的制备及界面电子结构
Ga 2 O 3具有超宽的带隙和高击穿场,正成为一种有趣的半导体,用于大功率电子设备和日盲紫外光探测器。为了完全扩展其在光电子领域的应用,非常需要制造ap-n异质结。在这项工作中,我们报告了对由宽带隙NiO和β相Ga 2 O 3组成的ap–n异质结的外延生长和界面特性的详细研究。我们表明,氧化镍(111)层可以上生长的β-Ga 2 ö 3(2 01)的薄膜,具有外延的NiO(111)||β -镓关系2 ö 3(201)和NiO {110} ||β -镓2 ö 3(1 3 2)。PN二极管在±2.0 V的电压下显示出约6个数量级的大电流整流比。详细的X射线光电子能谱研究表明,价带偏移为2.1 eV的“交错”带取向。更有趣的是,一个大的向上内置1.1电子伏特的潜力的β-Ga 2 ö 3在靠近界面区域中观察到。价带偏移和在异质界面处形成的大内在电势为光生激子的分离和迁移提供了有利的能量学,这对于自供电的日盲紫外线紫外光检测尤为重要。
更新日期:2020-02-13
中文翻译:
宽带隙NiO和Ga 2 O 3 p–n异质结的制备及界面电子结构
Ga 2 O 3具有超宽的带隙和高击穿场,正成为一种有趣的半导体,用于大功率电子设备和日盲紫外光探测器。为了完全扩展其在光电子领域的应用,非常需要制造ap-n异质结。在这项工作中,我们报告了对由宽带隙NiO和β相Ga 2 O 3组成的ap–n异质结的外延生长和界面特性的详细研究。我们表明,氧化镍(111)层可以上生长的β-Ga 2 ö 3(2 01)的薄膜,具有外延的NiO(111)||β -镓关系2 ö 3(201)和NiO {110} ||β -镓2 ö 3(1 3 2)。PN二极管在±2.0 V的电压下显示出约6个数量级的大电流整流比。详细的X射线光电子能谱研究表明,价带偏移为2.1 eV的“交错”带取向。更有趣的是,一个大的向上内置1.1电子伏特的潜力的β-Ga 2 ö 3在靠近界面区域中观察到。价带偏移和在异质界面处形成的大内在电势为光生激子的分离和迁移提供了有利的能量学,这对于自供电的日盲紫外线紫外光检测尤为重要。