当前位置: X-MOL 学术Adv. Energy Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
3D‐Printed Stretchable Micro‐Supercapacitor with Remarkable Areal Performance
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2020-01-30 , DOI: 10.1002/aenm.201903794
Xiran Li 1 , Hongpeng Li 1 , Xiangqian Fan 1 , Xinlei Shi 1 , Jiajie Liang 1, 2, 3
Affiliation  

While stretchable micro‐supercapacitors (MSCs) have been realized, they have suffered from limited areal electrochemical performance, thus greatly restricting their practical electronic application. Herein, a facile strategy of 3D printing and unidirectional freezing of a pseudoplastic nanocomposite gel composed of Ti3C2Tx MXene nanosheets, manganese dioxide nanowire, silver nanowires, and fullerene to construct intrinsically stretchable MSCs with thick and honeycomb‐like porous interdigitated electrodes is introduced. The unique architecture utilizes thick electrodes and a 3D porous conductive scaffold in conjunction with interacting material properties to achieve higher loading of active materials, larger interfacial area, and faster ion transport for significantly improved areal energy and power density. Moreover, the oriented cellular scaffold with fullerene‐induced slippage cell wall structure prompts the printed electrode to withstand large deformations without breaking or exhibiting obvious performance degradation. When imbued with a polymer gel electrolyte, the 3D‐printed MSC achieves an unprecedented areal capacitance of 216.2 mF cm−2 at a scan rate of 10 mV s−1, and remains stable when stretched up to 50% and after 1000 stretch/release cycles. This intrinsically stretchable MSC also exhibits high rate capability and outstanding areal energy density of 19.2 µWh cm−2 and power density of 58.3 mW cm−2, outperforming all reported stretchable MSCs.

中文翻译:

3D打印可拉伸微型超级电容器,具有出色的区域性能

尽管已经实现了可拉伸的微型超级电容器(MSC),但它们的区域电化学性能受到限制,因此极大地限制了其实际的电子应用。本文中,一种由Ti 3 C 2 T x组成的假塑性纳米复合凝胶的3D打印和单向冻结的简便策略引入了MXene纳米片,二氧化锰纳米线,银纳米线和富勒烯,以构建具有厚且蜂窝状多孔叉指电极的本征可拉伸MSC。独特的架构利用厚电极和3D多孔导电支架以及相互作用的材料特性来实现更高的活性材料负载,更大的界面面积以及更快的离子传输速度,从而显着提高了面能量和功率密度。此外,具有富勒烯诱导的滑爽细胞壁结构的定向细胞支架促使印刷电极承受较大的变形,而不会断裂或表现出明显的性能下降。当填充有聚合物凝胶电解质时,3D打印的MSC可获得216.2 mF cm的前所未有的面电容-2以10 mV s -1的扫描速率,并且在拉伸到50%时以及在1000次拉伸/释放循环后保持稳定。这种本质上可拉伸的MSC还具有高速率能力,出色的面能量密度为19.2 µWh cm -2,功率密度为58.3 mW cm -2,优于所有报道的可拉伸MSC。
更新日期:2020-04-14
down
wechat
bug