Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Boosting the Heat Dissipation Performance of Graphene/Polyimide Flexible Carbon Film via Enhanced Through‐Plane Conductivity of 3D Hybridized Structure
Small ( IF 13.0 ) Pub Date : 2020-01-30 , DOI: 10.1002/smll.201903315 Yanhua Li 1, 2 , Yanfei Zhu 1, 3 , Gaopeng Jiang 3 , Zachary P. Cano 3 , Jun Yang 4 , Jin Wang 4 , Jilei Liu 1 , Xiaohua Chen 1 , Zhongwei Chen 3
Small ( IF 13.0 ) Pub Date : 2020-01-30 , DOI: 10.1002/smll.201903315 Yanhua Li 1, 2 , Yanfei Zhu 1, 3 , Gaopeng Jiang 3 , Zachary P. Cano 3 , Jun Yang 4 , Jin Wang 4 , Jilei Liu 1 , Xiaohua Chen 1 , Zhongwei Chen 3
Affiliation
The development of materials with efficient heat dissipation capability has become essential for next‐generation integrated electronics and flexible smart devices. Here, a 3D hybridized carbon film with graphene nanowrinkles and microhinge structures by a simple solution dip‐coating technique using graphene oxide (GO) on polyimide (PI) skeletons, followed by high‐temperature annealing, is constructed. Such a design provides this graphitized GO/PI (g‐GO/PI) film with superflexibility and ultrahigh thermal conductivity in the through‐plane (150 ± 7 W m‐1 K‐1) and in‐plane (1428 ± 64 W m‐1 K‐1) directions. Its superior thermal management capability compared with aluminum foil is also revealed by proving its benefit as a thermal interface material. More importantly, by coupling the hypermetallic thermal conductivity in two directions, a novel type of carbon film origami heat sink is proposed and demonstrated, outperforming copper foil in terms of heat extraction and heat transfer for high‐power devices. The hypermetallic heat dissipation performance of g‐GO/PI carbon film not only shows its promising application as an emerging thermal management material, but also provides a facile and feasible route for the design of next‐generation heat dissipation components for high‐power flexible smart devices.
中文翻译:
通过增强3D杂化结构的贯穿平面电导率来提高石墨烯/聚酰亚胺柔性碳膜的散热性能
具有高效散热能力的材料的开发对于下一代集成电子设备和柔性智能设备已经至关重要。在这里,通过在聚酰亚胺(PI)骨架上使用氧化石墨烯(GO)的简单溶液浸涂技术构建了具有石墨烯纳米皱纹和微铰链结构的3D杂化碳膜,然后进行了高温退火。这样的设计为这种石墨化的GO / PI(g-GO / PI)膜提供了超柔韧性和超高导热性,贯穿面(150±7 W m -1 K -1)和面内(1428±64 W m)‐1 K ‐1)路线。与铝箔相比,其出色的热管理能力还证明了其作为热界面材料的优势。更重要的是,通过在两个方向上耦合超金属热导率,提出并演示了一种新型的碳膜折纸散热器,其在大功率器件的吸热和传热方面优于铜箔。g‐GO / PI碳膜的超金属散热性能不仅显示了其作为新兴热管理材料的有前途的应用,而且还为设计用于大功率柔性智能手机的下一代散热组件提供了简便可行的途径。设备。
更新日期:2020-02-25
中文翻译:
通过增强3D杂化结构的贯穿平面电导率来提高石墨烯/聚酰亚胺柔性碳膜的散热性能
具有高效散热能力的材料的开发对于下一代集成电子设备和柔性智能设备已经至关重要。在这里,通过在聚酰亚胺(PI)骨架上使用氧化石墨烯(GO)的简单溶液浸涂技术构建了具有石墨烯纳米皱纹和微铰链结构的3D杂化碳膜,然后进行了高温退火。这样的设计为这种石墨化的GO / PI(g-GO / PI)膜提供了超柔韧性和超高导热性,贯穿面(150±7 W m -1 K -1)和面内(1428±64 W m)‐1 K ‐1)路线。与铝箔相比,其出色的热管理能力还证明了其作为热界面材料的优势。更重要的是,通过在两个方向上耦合超金属热导率,提出并演示了一种新型的碳膜折纸散热器,其在大功率器件的吸热和传热方面优于铜箔。g‐GO / PI碳膜的超金属散热性能不仅显示了其作为新兴热管理材料的有前途的应用,而且还为设计用于大功率柔性智能手机的下一代散热组件提供了简便可行的途径。设备。