当前位置: X-MOL 学术Chem. Eng. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Solving the H2O2 by-product problem using a catalase-mimicking nanozyme cascade to enhance glycolic acid oxidase
Chemical Engineering Journal ( IF 13.3 ) Pub Date : 2020-01-28 , DOI: 10.1016/j.cej.2020.124249
Mengzhao Jiao , Zhengjun Li , Xianglai Li , Zijie Zhang , Qipeng Yuan , Frank Vriesekoop , Hao Liang , Juewen Liu

Self-inactivation of oxidases due to by-product hydrogen peroxide (H2O2) is a main obstacle to applying these enzymes in chemical production. Herein, we report an efficient cascade strategy of co-immobilizing a natural oxidase and catalase-mimicking coordination nanoparticles. Fe3+ and adenosine monophosphate (AMP) formed coordination nanoparticles with comparable performance as natural catalase at ambient conditions for degrading H2O2, but the former still maintained about 90% or 75% catalytic activity after pH 2.0 or 90 ℃ treatment, respectively. Upon polymerization with a few acrylic monomers, glycolic acid oxidase (GyAO) was co-immobilized with Fe3+/AMP within a nanogel. Benefiting from the confinement and protection effect of the nanogel, the catalytic activity increased by 5-fold at pH 4, and 10-fold at 80 ℃, and the catalytic activity of the nanogel still retained more than 65% after recycling 20 times. More importantly, the tolerance of the nanogel to glycolic acid enhanced 100 times compared with the free GyAO enzyme. This study has expanded the application of nanozymes to industrial catalysis, where harsh conditions are expected.



中文翻译:

使用过氧化氢酶模拟纳米酶级联反应增强乙醇酸氧化酶,解决H 2 O 2副产物问题

由于副产物过氧化氢(H 2 O 2)导致的氧化酶自灭活是将这些酶应用于化学生产的主要障碍。在本文中,我们报告了共固定天然氧化酶和过氧化氢酶模拟配位纳米颗粒的有效级联策略。Fe 3+和单磷酸腺苷(AMP)形成的配位纳米粒子在环境条件下具有可与天然过氧化氢酶媲美的降解H 2 O 2的性能,但前者在pH 2.0或90℃处理后仍分别保持约90%或75%的催化活性。 。与几种丙烯酸单体聚合后,乙醇酸氧化酶(GyAO)与Fe 3+共固定/ AMP在纳米凝胶中。得益于纳米凝胶的封闭和保护作用,在pH值为4时催化活性提高了5倍,在80℃时催化活性增强了10倍,回收20次后纳米凝胶的催化活性仍保持65%以上。更重要的是,与游离GyAO酶相比,纳米凝胶对乙醇酸的耐受性提高了100倍。这项研究将纳米酶的应用扩展到了预期苛刻条件下的工业催化领域。

更新日期:2020-01-29
down
wechat
bug