Journal of Power Sources ( IF 8.1 ) Pub Date : 2020-01-26 , DOI: 10.1016/j.jpowsour.2020.227775 Yinfeng Cheng , Baoqiang Li , Zengyan Wei , Yaming Wang , Daqing Wei , Dechang Jia , Yujie Feng , Yu Zhou
Nanostructured metal oxides have shown outstanding promise for electrochemical energy storage, but are usually limited to low rate capability and poor cycling performance caused by irregular shapes and aggregation of nanoparticles at high mass loading (>1 mg cm−2). To solve these problems, we report the design of a novel Mn3O4 tetragonal bipyramid laden nitrogen doped and hierarchically porous carbon (Mn3O4 TB/NHPC) composite with higher mass loading (~5 mg cm−2) for high-performance energy storage. The homogeneous dispersion of Mn3O4 TBs on NHPC with 3D architecture provides excellent electron transfer, and its hierarchically porous structure with large mesopore volume facilitates rapid ion transport. To achieve wide working potential window, an asymmetric supercapacitor of 1.8 V is assembled with Mn3O4 TB/NHPC composite and NHPC as the positive and negative electrode, respectively. Benefiting from these advantages, the supercapacitor exhibits excellent rate capability (80% of the capacitance retention from 0.5 to 10.0 A g−1) and high energy density (34.7 Wh kg−1 at 450 W kg−1). More importantly, the assembled device demonstrates a splendid cycling performance (97% capacitance retention after 10000 cycles). Morphology controlled Mn3O4 laden porous carbon composites with remarkable capacitive performance inspire us to develop superior electrode materials for energy storage.
中文翻译:
Mn 3 O 4掺杂四方双锥型氮的分级多孔碳复合材料,作为高性能不对称超级电容器的正极
纳米结构的金属氧化物已显示出用于电化学能量存储的杰出前景,但通常限于低速率能力和由不规则形状和在高质量负载下(> 1 mg cm -2)的纳米颗粒聚集引起的不良循环性能。为了解决这些问题,我们报告了一种新型的Mn 3 O 4掺杂四方双锥型氮掺杂且分层多孔碳(Mn 3 O 4 TB / NHPC)复合材料的设计,该复合材料具有较高的质量负荷(〜5 mg cm -2),可满足较高的负荷。性能能量存储。Mn 3 O 4的均匀分散具有3D结构的NHPC上的TB可提供出色的电子转移,其具有大孔体积的分层多孔结构有利于快速离子迁移。为了获得宽的工作电势窗口,将Mn 3 O 4 TB / NHPC复合材料和NHPC分别用作正电极和负电极来组装一个1.8 V的不对称超级电容器。从这些优点中受益,超级电容器表现出优异的倍率性能(容量维持80%的为0.5〜10.0 A G -1)和高能量密度(瓦34.7千克-1在450瓦千克-1)。更重要的是,组装后的器件表现出出色的循环性能(10000次循环后电容保持率达97%)。形态控制锰具有出色电容性能的3 O 4负载多孔碳复合材料启发我们开发出用于储能的优质电极材料。