当前位置: X-MOL 学术Nat. Electron. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Sensitive pressure sensors based on conductive microstructured air-gap gates and two-dimensional semiconductor transistors
Nature Electronics ( IF 33.7 ) Pub Date : 2020-01-24 , DOI: 10.1038/s41928-019-0356-5
Yun-Chiao Huang , Yuan Liu , Chao Ma , Hung-Chieh Cheng , Qiyuan He , Hao Wu , Chen Wang , Cheng-Yi Lin , Yu Huang , Xiangfeng Duan

Microscopic pressure sensors that can rapidly detect small pressure variations are of value in robotic technologies, human–machine interfaces, artificial intelligence and health monitoring devices. However, both capacitive and transistor-based pressure sensors have limitations in terms of sensitivity, response speed, stability and power consumption. Here we show that highly sensitive pressure sensors can be created by integrating a conductive microstructured air-gap gate with two-dimensional semiconductor transistors. The air-gap gate can be used to create capacitor-based sensors that have tunable sensitivity and pressure-sensing range, exhibiting an average sensitivity of 44 kPa−1 in the 0–5 kPa regime and a peak sensitivity up to 770 kPa−1. Furthermore, by employing the air-gap gate as a pressure-sensitive gate for two-dimensional semiconductor transistors, the pressure sensitivity of the device can be amplified to ~103–107 kPa−1 at an optimized pressure regime of ~1.5 kPa. Our sensors also offer fast response speeds, low power consumption, low minimum pressure detection limits and excellent stability. We illustrate their capabilities by using them to perform static pressure mapping, real-time human pulse wave measurements, sound wave detection and remote pressure monitoring.



中文翻译:

基于导电微结构气隙门和二维半导体晶体管的灵敏压力传感器

可以快速检测到微小压力变化的微观压力传感器在机器人技术,人机界面,人工智能和健康监测设备中具有重要的价值。但是,电容式和基于晶体管的压力传感器在灵敏度,响应速度,稳定性和功耗方面都有局限性。在这里,我们显示可以通过将导电微结构气隙栅极与二维半导体晶体管集成在一起来创建高灵敏度的压力传感器。气隙门可用于创建具有可调灵敏度和压力感应范围的基于电容器的传感器,在0-5 kPa范围内平均灵敏度为44 kPa -1,峰值灵敏度高达770 kPa -1。此外,通过将气隙栅极用作二维半导体晶体管的压敏栅极,可以在约1.5 kPa的最佳压力下将器件的压敏度放大到〜10 3 –10 7  kPa -1。我们的传感器还具有快速的响应速度,低功耗,较低的最小压力检测极限和出色的稳定性。我们通过使用它们执行静态压力映射,实时人体脉搏波测量,声波检测和远程压力监控来说明其功能。

更新日期:2020-01-24
down
wechat
bug