当前位置:
X-MOL 学术
›
Adv. Electron. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Benchmarking β‐Ga2O3 Schottky Diodes by Nanoscale Ballistic Electron Emission Microscopy
Advanced Electronic Materials ( IF 5.3 ) Pub Date : 2020-01-22 , DOI: 10.1002/aelm.201901151 Renato Buzio 1 , Andrea Gerbi 1 , Qiming He 2 , Yuan Qin 2 , Wenxiang Mu 3 , Zhitai Jia 3 , Xutang Tao 3 , Guangwei Xu 4 , Shibing Long 4
Advanced Electronic Materials ( IF 5.3 ) Pub Date : 2020-01-22 , DOI: 10.1002/aelm.201901151 Renato Buzio 1 , Andrea Gerbi 1 , Qiming He 2 , Yuan Qin 2 , Wenxiang Mu 3 , Zhitai Jia 3 , Xutang Tao 3 , Guangwei Xu 4 , Shibing Long 4
Affiliation
Monoclinic beta‐phase gallium oxide (β‐Ga2O3) is an ultrawide‐bandgap semiconductor, intensively studied as a viable candidate for next‐generation power electronics, optoelectronics, and extreme environment electronics. Schottky contacts to β‐Ga2O3 are of paramount importance to this end; however, they are not yet fundamentally understood. Intrinsic sources of interfacial disorder, including oxygen‐related defects and extrinsic fabrication factors, are thought to greatly determine the properties of such contacts, for example by originating Fermi level pinning and causing patches with different Schottky barrier heights (SBHs). Ballistic electron emission microscopy (BEEM) is used to probe band bending and interfacial inhomogeneity at the nanoscale for prototypical Au/ and Pt/(100)β‐Ga2O3 single crystal Schottky barrier diodes. It is shown that SBH fluctuations amount to 40–60 meV under vacuum, occurring over length scales of tens of nanometers. Furthermore, a remarkable SBH modulation of ≈0.2 eV takes place upon exposure of devices from vacuum to ambient air. Such findings—better obtained by BEEM than by macroscale approaches—point to the existence of an ubiquitous inhomogeneous interfacial layer, controlling band bending and ambient sensitivity via oxygen ionosorption and interface redox chemistry. This study ascribes a key role to interfacial oxygen vacancies, and has practical implications for transport modelling and interface engineering.
中文翻译:
纳米弹道电子发射显微镜对β-Ga2O3肖特基二极管进行基准测试
单斜晶β-相氧化镓(的β-Ga 2 ö 3)是一个超宽带隙半导体,进行了深入研究,作为下一代的电力电子学,光电子学,和极端环境电子器件的可行的候选。肖特基接触到的β-Ga 2 ö 3在这方面至关重要 但是,它们还没有从根本上被理解。界面紊乱的内在来源,包括与氧气有关的缺陷和外在制造因素,被认为可以极大地决定这种接触的特性,例如通过产生费米能级钉扎并产生具有不同肖特基势垒高度(SBH)的斑块。弹道电子发射显微镜(BEEM)用于探测在纳米级为原型的Au /和Pt带弯曲和界面不均匀性/(100)的β-Ga 2 ö 3单晶肖特基势垒二极管。结果表明,在数十纳米的长度范围内,真空下SBH的波动总计为40–60 meV。此外,当设备从真空暴露于环境空气时,会发生约0.2 eV的SBH调制。这种发现(通过BEEM而不是通过宏观方法获得的结果更好)表明存在普遍存在的不均匀界面层,可通过氧离子吸附和界面氧化还原化学控制能带弯曲和环境敏感性。这项研究归因于界面氧空位的关键作用,并且对运输模型和界面工程具有实际意义。
更新日期:2020-03-09
中文翻译:
纳米弹道电子发射显微镜对β-Ga2O3肖特基二极管进行基准测试
单斜晶β-相氧化镓(的β-Ga 2 ö 3)是一个超宽带隙半导体,进行了深入研究,作为下一代的电力电子学,光电子学,和极端环境电子器件的可行的候选。肖特基接触到的β-Ga 2 ö 3在这方面至关重要 但是,它们还没有从根本上被理解。界面紊乱的内在来源,包括与氧气有关的缺陷和外在制造因素,被认为可以极大地决定这种接触的特性,例如通过产生费米能级钉扎并产生具有不同肖特基势垒高度(SBH)的斑块。弹道电子发射显微镜(BEEM)用于探测在纳米级为原型的Au /和Pt带弯曲和界面不均匀性/(100)的β-Ga 2 ö 3单晶肖特基势垒二极管。结果表明,在数十纳米的长度范围内,真空下SBH的波动总计为40–60 meV。此外,当设备从真空暴露于环境空气时,会发生约0.2 eV的SBH调制。这种发现(通过BEEM而不是通过宏观方法获得的结果更好)表明存在普遍存在的不均匀界面层,可通过氧离子吸附和界面氧化还原化学控制能带弯曲和环境敏感性。这项研究归因于界面氧空位的关键作用,并且对运输模型和界面工程具有实际意义。