当前位置: X-MOL 学术J. Am. Chem. Soc. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
High efficiency mesoscopic solar cells using CsPbI3 perovskite quantum dots enabled by chemical interface engineering
Journal of the American Chemical Society ( IF 14.4 ) Pub Date : 2020-01-22 , DOI: 10.1021/jacs.9b10700
Keqiang Chen 1, 2 , Wei Jin 1 , Yupeng Zhang 2 , Tingqiang Yang 1 , Peter Reiss 3 , Qiaohui Zhong 1 , Udo Bach 4 , Qitao Li 1 , Yingwei Wang 2 , Han Zhang 2 , Qiaoliang Bao 5 , Yueli Liu 1
Affiliation  

All-inorganic α-CsPbI3 perovskite quantum dots (QDs) are attracting high interest as solar cell absorbers due to their appealing light harvesting properties and enhanced stability due to the absence of volatile organic constituents. Moreover, ex situ synthesized QDs significantly reduce the variability of the perovskite layer deposition process. However, it is highly challenging to incorporate α-CsPbI3 QDs into mesoporous TiO2 (m-TiO2), which constitutes the best performing electron transport material in state-of-the-art perovskite solar cells. Herein, the m-TiO2 surface is engineered using an electron-rich cesium-ion containing methyl acetate solution. As one effect of this treatment, the solid-liquid interfacial tension at the TiO2 surface is reduced and the wettability is improved, facilitating the migration of the QDs into m-TiO2. As a second effect Cs+ ions passivate the QD surface and promote the charge transfer at the m-TiO2/QD interface, leading to an enhancement of the electron injection rate by a factor of three. In combination with an ethanol-environment smoothing route significantly reducing the surface roughness of the m-TiO2/QD layer, optimized devices exhibit highly reproducible power conversion efficiencies exceeding 13%. The best cell with an efficiency of 14.32% (reverse scan) reaches a short-circuit current density of 17.77 mA cm-2, which is an outstanding value for QD-based perovskite solar cells.

中文翻译:

通过化学界面工程使用 CsPbI3 钙钛矿量子点的高效介观太阳能电池

全无机 α-CsPbI3 钙钛矿量子点(QD)由于其吸引人的光收集特性和由于不存在挥发性有机成分而增强的稳定性而作为太阳能电池吸收剂引起了高度关注。此外,非原位合成的 QD 显着降低了钙钛矿层沉积过程的可变性。然而,将 α-CsPbI3 QD 结合到介孔 TiO2 (m-TiO2) 中是非常具有挑战性的,介孔 TiO2 构成了最先进的钙钛矿太阳能电池中性能最好的电子传输材料。在此,m-TiO2 表面是使用富含电子的铯离子的乙酸甲酯溶液设计的。作为这种处理的一个效果,TiO2 表面的固液界面张力降低,润湿性提高,促进 QD 迁移到 m-TiO2。作为第二个效应,Cs+ 离子钝化 QD 表面并促进 m-TiO2/QD 界面处的电荷转移,导致电子注入速率提高三倍。与乙醇-环境平滑路线相结合,显着降低了 m-TiO2/QD 层的表面粗糙度,优化后的器件表现出超过 13% 的高度可重复的功率转换效率。效率为 14.32%(反向扫描)的最佳电池达到 17.77 mA cm-2 的短路电流密度,这对于基于 QD 的钙钛矿太阳能电池来说是一个突出的值。与乙醇-环境平滑路线相结合,显着降低了 m-TiO2/QD 层的表面粗糙度,优化后的器件表现出超过 13% 的高度可重复的功率转换效率。效率为 14.32%(反向扫描)的最佳电池达到 17.77 mA cm-2 的短路电流密度,这对于基于 QD 的钙钛矿太阳能电池来说是一个突出的值。与乙醇-环境平滑路线相结合,显着降低了 m-TiO2/QD 层的表面粗糙度,优化后的器件表现出超过 13% 的高度可重复的功率转换效率。效率为 14.32%(反向扫描)的最佳电池达到 17.77 mA cm-2 的短路电流密度,这对于基于 QD 的钙钛矿太阳能电池来说是一个突出的值。
更新日期:2020-01-22
down
wechat
bug